A172315 Primes of the form 2^i*3^j - 1 with i + j = 13.
8191, 27647, 62207, 139967, 314927, 472391, 1062881
Offset: 1
Examples
8191 = 2^13 - 1 = prime(1028) 27647 = 2^10 x 3^3 - 1 = prime(3016) = prime(2^3 x 13 x 29) 62207 = 2^8 x 3^5 - 1 = prime(6253) = prime(13^ 2 x 37) 139967 = 2^6 x 3^7 - 1 = prime(13005) 314927 = 2^4 x 3^9 - 1 = prime(27191), index is prime(2978) 472391 = 2^3 x 3^10 - 1 = prime(39419), index is prime(4150) 1062881 = 2 x 3^12 - 1 = prime(83024)
References
- Helmut Kracke, Mathe-musische Knobelisken, Duemmler Bonn, 2. Auflage 1983
Programs
-
Mathematica
Select[Union[Flatten[{2^#[[1]] 3^#[[2]]-1,2^#[[2]] 3^#[[1]]-1}&/@ Table[ {n,13-n},{n,0,13}]]],PrimeQ] (* Harvey P. Dale, Jan 11 2016 *)
Comments