A172358
Triangle read by rows: T(n,k) = round(c(n)/(c(k)*c(n-k))) where c are partial products of a sequence defined in comments.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1, 1, 3, 9, 9, 3, 1, 1, 5, 15, 45, 15, 5, 1, 1, 9, 45, 135, 135, 45, 9, 1, 1, 11, 99, 495, 495, 495, 99, 11, 1, 1, 19, 209, 1881, 3135, 3135, 1881, 209, 19, 1, 1, 29, 551, 6061, 18183, 30305, 18183, 6061, 551, 29, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 1, 1;
1, 1, 1, 1;
1, 3, 3, 3, 1;
1, 3, 9, 9, 3, 1;
1, 5, 15, 45, 15, 5, 1;
1, 9, 45, 135, 135, 45, 9, 1;
1, 11, 99, 495, 495, 495, 99, 11, 1;
1, 19, 209, 1881, 3135, 3135, 1881, 209, 19, 1;
1, 29, 551, 6061, 18183, 30305, 18183, 6061, 551, 29, 1;
-
f[n_, q_]:= f[n, q]= If[n<3, Fibonacci[n], f[n-2, q] + q*f[n-3, q]];
c[n_, q_]:= Product[f[j, q], {j,n}];
T[n_, k_, q_]:= Round[c[n, q]/(c[k, q]*c[n-k, q])];
Table[T[n, k, 2], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, May 09 2021 *)
-
@CachedFunction
def f(n,q): return fibonacci(n) if (n<3) else f(n-2, q) + q*f(n-3, q)
def c(n,q): return product( f(j,q) for j in (1..n) )
def T(n,k,q): return round(c(n, q)/(c(k, q)*c(n-k, q)))
flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 09 2021
Definition corrected to give integral terms by
G. C. Greubel, May 09 2021
A172359
Triangle read by rows: T(n,k) = round(c(n)/(c(k)*c(n-k))) where c are partial products of a sequence defined in comments.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 1, 1, 5, 25, 25, 5, 1, 1, 9, 45, 225, 45, 9, 1, 1, 25, 225, 1125, 1125, 225, 25, 1, 1, 29, 725, 6525, 6525, 6525, 725, 29, 1, 1, 61, 1769, 44225, 79605, 79605, 44225, 1769, 61, 1, 1, 129, 7869, 228201, 1141005, 2053809, 1141005, 228201, 7869, 129, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 1, 1;
1, 1, 1, 1;
1, 5, 5, 5, 1;
1, 5, 25, 25, 5, 1;
1, 9, 45, 225, 45, 9, 1;
1, 25, 225, 1125, 1125, 225, 25, 1;
1, 29, 725, 6525, 6525, 6525, 725, 29, 1;
1, 61, 1769, 44225, 79605, 79605, 44225, 1769, 61, 1;
1, 129, 7869, 228201, 1141005, 2053809, 1141005, 228201, 7869, 129, 1;
-
f[n_, q_]:= f[n, q]= If[n<3, Fibonacci[n], f[n-2, q] + q*f[n-3, q]];
c[n_, q_]:= Product[f[j, q], {j,n}];
T[n_, k_, q_]:= Round[c[n, q]/(c[k, q]*c[n-k, q])];
Table[T[n, k, 4], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, May 09 2021 *)
-
@CachedFunction
def f(n,q): return fibonacci(n) if (n<3) else f(n-2, q) + q*f(n-3, q)
def c(n,q): return product( f(j,q) for j in (1..n) )
def T(n,k,q): return round(c(n, q)/(c(k, q)*c(n-k, q)))
flatten([[T(n,k,4) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 09 2021
Definition corrected to give integral terms by
G. C. Greubel, May 09 2021
A172360
Triangle read by rows: T(n,k) = round(c(n)/(c(k)*c(n-k))) where c are partial products of a sequence defined in comments.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 6, 6, 1, 1, 6, 36, 36, 6, 1, 1, 11, 66, 396, 66, 11, 1, 1, 36, 396, 2376, 2376, 396, 36, 1, 1, 41, 1476, 16236, 16236, 16236, 1476, 41, 1, 1, 91, 3731, 134316, 246246, 246246, 134316, 3731, 91, 1, 1, 221, 20111, 824551, 4947306, 9070061, 4947306, 824551, 20111, 221, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 1, 1;
1, 1, 1, 1;
1, 6, 6, 6, 1;
1, 6, 36, 36, 6, 1;
1, 11, 66, 396, 66, 11, 1;
1, 36, 396, 2376, 2376, 396, 36, 1;
1, 41, 1476, 16236, 16236, 16236, 1476, 41, 1;
1, 91, 3731, 134316, 246246, 246246, 134316, 3731, 91, 1;
1, 221, 20111, 824551, 4947306, 9070061, 4947306, 824551, 20111, 221, 1;
-
f[n_, q_]:= f[n, q]= If[n<3, Fibonacci[n], f[n-2, q] + q*f[n-3, q]];
c[n_, q_]:= Product[f[j, q], {j,n}];
T[n_, k_, q_]:= Round[c[n, q]/(c[k, q]*c[n-k, q])];
Table[T[n, k, 5], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, May 09 2021 *)
-
@CachedFunction
def f(n,q): return fibonacci(n) if (n<3) else f(n-2, q) + q*f(n-3, q)
def c(n,q): return product( f(j,q) for j in (1..n) )
def T(n,k,q): return round(c(n, q)/(c(k, q)*c(n-k, q)))
flatten([[T(n,k,5) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 09 2021
Definition corrected to give integral terms by
G. C. Greubel, May 09 2021
A172355
Triangle t(n,k) read by rows: generalized Padovan factorial ratios c(n)/(c(k)*c(n-k)) where c are partial products of a generalized Padovan sequence with multiplier m=5.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 5, 5, 1, 1, 6, 30, 6, 1, 1, 26, 156, 156, 26, 1, 1, 35, 910, 1092, 910, 35, 1, 1, 136, 4760, 24752, 24752, 4760, 136, 1, 1, 201, 27336, 191352, 829192, 191352, 27336, 201, 1, 1, 715, 143715, 3909048, 22802780, 22802780, 3909048, 143715, 715
Offset: 0
1;
1, 1;
1, 1, 1;
1, 5, 5, 1;
1, 6, 30, 6, 1;
1, 26, 156, 156, 26, 1;
1, 35, 910, 1092, 910, 35, 1;
1, 136, 4760, 24752, 24752, 4760, 136, 1;
1, 201, 27336, 191352, 829192, 191352, 27336, 201, 1;
1, 715, 143715, 3909048, 22802780, 22802780, 3909048, 143715, 715, 1;
1, 1141, 815815, 32795763, 743370628, 1000691230, 743370628, 32795763, 815815, 1141, 1;
-
Clear[f, c, a, t];
f[0, a_] := 0; f[1, a_] := 1; f[2, a_] := 1;
f[n_, a_] := f[n, a] = a*f[n - 2, a] + f[n - 3, a];
c[n_, a_] := If[n == 0, 1, Product[f[i, a], {i, 1, n}]];
t[n_, m_, a_] := c[n, a]/(c[m, a]*c[n - m, a]);
Table[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}], {a, 1, 10}];
Table[Flatten[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}]], {a, 1, 10}]
Showing 1-4 of 4 results.
Comments