cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172370 Mirrored triangle A120072 read by rows.

Original entry on oeis.org

3, 5, 8, 7, 3, 15, 9, 16, 21, 24, 11, 5, 1, 2, 35, 13, 24, 33, 40, 45, 48, 15, 7, 39, 3, 55, 15, 63, 17, 32, 5, 56, 65, 8, 77, 80, 19, 9, 51, 4, 3, 21, 91, 6, 99, 21, 40, 57, 72, 85, 96, 105, 112, 117, 120, 23, 11, 7, 5, 95, 1, 119, 1, 5, 35, 143, 25, 48, 69, 88, 105, 120, 133, 144
Offset: 2

Views

Author

Paul Curtz, Feb 01 2010

Keywords

Comments

A table of numerators of 1/n^2 - 1/m^2 extended to negative m looks as follows, stacked such that values of common m are aligned
and the central column of -1 is defined for m=0:
.............................0..-1...0...3...8..15..24..35..48..63..80..99. A005563
.........................0..-3..-1..-3...0...5...3..21...2..45..15..77...6. A061037
.....................0..-5..-8..-1..-8..-5...0...7..16...1..40..55...8..91. A061039
.................0..-7..-3.-15..-1.-15..-3..-7...0...9...5..33...3..65..21. A061041
.............0..-9.-16.-21.-24..-1.-24.-21.-16..-9...0..11..24..39..56...3. A061043
.........0.-11..-5..-1..-2.-35..-1.-35..-2..-1..-5.-11...0..13...7...5...4. A061045
.....0.-13.-24.-33.-40.-45.-48..-1.-48.-45.-40.-33.-24.-13...0..15..32..51. A061047
.0.-15..-7.-39..-3.-55.-15.-63..-1.-63.-15.-55..-3.-39..-7.-15...0..17...9. A061049
The row-reversed variant of A120072 appears (negated) after the leftmost 0.
Equals A061035 with the first column removed. - Georg Fischer, Jul 26 2023

Examples

			The table starts
   3
   5   8
   7   3  15
   9  16  21  24
  11   5   1   2  35
  13  24  33  40  45  48
  15   7  39   3  55  15  63
  17  32   5  56  65   8  77  80
  19   9  51   4   3  21  91   6  99
		

Crossrefs

Lower diagonal gives: A070262, A061037(n+2).

Programs

  • Magma
    [[Numerator(1/(n-k)^2 -1/n^2): k in [1..n-1]]: n in [2..20]]; // G. C. Greubel, Sep 20 2018
  • Mathematica
    Table[Numerator[1/(n-k)^2 -1/n^2], {n, 2, 20}, {k, 1, n-1}]//Flatten (* G. C. Greubel, Sep 20 2018 *)
  • PARI
    for(n=2,20, for(k=1,n-1, print1(numerator(1/(n-k)^2 -1/n^2), ", "))) \\ G. C. Greubel, Sep 20 2018
    

Formula

T(n,m) = numerator of 1/(n-m)^2 - 1/n^2, n >= 2, 1 <= m < n. - R. J. Mathar, Nov 23 2010

Extensions

Comment rewritten and offset set to 2 by R. J. Mathar, Nov 23 2010