cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A172157 Triangle T(n,m) = numerator of 1/n^2 - 1/m^2, read by rows, with T(n,0) = -1.

Original entry on oeis.org

-1, -1, -3, -1, -8, -5, -1, -15, -3, -7, -1, -24, -21, -16, -9, -1, -35, -2, -1, -5, -11, -1, -48, -45, -40, -33, -24, -13, -1, -63, -15, -55, -3, -39, -7, -15, -1, -80, -77, -8, -65, -56, -5, -32, -17, -1, -99, -6, -91, -21, -3, -4, -51, -9, -19, -1, -120, -117, -112
Offset: 1

Views

Author

Paul Curtz, Jan 27 2010

Keywords

Comments

The triangle obtained by negating the values of the triangle A120072 and adding a row T(n,0) = -1.

Examples

			The full array of numerators starts in row n=1 with columns m>=0 as:
-1...0...3...8..15..24..35..48..63..80..99. A005563
-1..-3...0...5...3..21...2..45..15..77...6. A061037, A070262
-1..-8..-5...0...7..16...1..40..55...8..91. A061039
-1.-15..-3..-7...0...9...5..33...3..65..21. A061041
-1.-24.-21.-16..-9...0..11..24..39..56...3. A061043
-1.-35..-2..-1..-5.-11...0..13...7...5...4. A061045
-1.-48.-45.-40.-33.-24.-13...0..15..32..51. A061047
-1.-63.-15.-55..-3.-39..-7.-15...0..17...9. A061049
The triangle is the portion below the main diagonal, left from the zeros, 0<=m<n.
		

Crossrefs

Programs

  • Mathematica
    T[n_, 0] := -1; T[n_, k_] := 1/n^2 - 1/k^2; Table[Numerator[T[n, k]], {n, 1, 100}, {k, 0, n - 1}] // Flatten (* G. C. Greubel, Sep 19 2018 *)

A174233 Triangle T(n,k) read by rows: the numerator of 1/n^2 - 1/(k-n)^2, 0 <= k < 2n.

Original entry on oeis.org

0, -1, 0, -3, -1, -3, 0, -5, -8, -1, -8, -5, 0, -7, -3, -15, -1, -15, -3, -7, 0, -9, -16, -21, -24, -1, -24, -21, -16, -9, 0, -11, -5, -1, -2, -35, -1, -35, -2, -1, -5, -11, 0, -13, -24, -33, -40, -45, -48, -1, -48, -45, -40, -33, -24, -13, 0, -15, -7, -39, -3, -55, -15, -63
Offset: 1

Views

Author

Paul Curtz, Mar 13 2010

Keywords

Comments

A value of -1 is substituted at the poles where k=n.
The triangle is created by selecting the first 2, 4, 6 etc elements of the array shown in A172370, equivalent to attaching the initial elements of the rows of A172157 to the rows of A174190.
If the first column of zeros is removed from the triangle, each row is left-right symmetric with respect to the center value.

Examples

			The triangle starts
  0,  -1;
  0,  -3,  -1,  -3;
  0,  -5,  -8,  -1,  -8,  -5;
  0,  -7,  -3, -15,  -1, -15,  -3,  -7;
  0,  -9, -16, -21, -24,  -1, -24, -21, -16,  -9;
  0, -11,  -5,  -1,  -2, -35,  -1, -35,  -2,  -1,  -5, -11;
  0, -13, -24, -33, -40, -45, -48,  -1, -48, -45, -40, -33, -24, -13;
		

Crossrefs

Programs

  • Maple
    A173233 := proc(n,k) if k = n then -1 ; else 1/n^2-1/(k-n)^2 ; numer(%) ; end if; end proc: # R. J. Mathar, Jan 06 2011
  • Mathematica
    T[n_, n_] := -1; T[n_, k_] := 1/n^2 - 1/(k - n)^2; Table[Numerator[T[n, k]], {n, 1, 20}, {k, 0, 2 n - 1}]//Flatten (* G. C. Greubel, Sep 19 2018 *)

A165507 Triangle T(n,m) read by rows: numerator of 1/(1+n-m)^2 - 1/m^2.

Original entry on oeis.org

0, -3, 3, -8, 0, 8, -15, -5, 5, 15, -24, -3, 0, 3, 24, -35, -21, -7, 7, 21, 35, -48, -2, -16, 0, 16, 2, 48, -63, -45, -1, -9, 9, 1, 45, 63, -80, -15, -40, -5, 0, 5, 40, 15, 80, -99, -77, -55, -33, -11, 11, 33, 55, 77, 99, -120, -6, -8, -3, -24, 0, 24, 3, 8, 6, 120
Offset: 1

Views

Author

Paul Curtz, Sep 21 2009

Keywords

Comments

The triangle is obtained from the infinite array shown in the comment in A172370 by starting in column 1 and reading diagonally upwards along increasing columns or starting in column -1 and reading diagonally upwards along decreasing columns.
Equivalence of these two interpretations follows from the mirror symmetry m <-> -m along column m=0 in that array.
T(n,m) is antisymmetric (changes sign) with respect to a central zero if the row index n is odd, and with respect to the separator in the middle of the row if the row index n is even: T(n,m) = -T(n,n+1-m).
An appropriate triangle of denominators is in A143183.

Examples

			The triangle starts in row n=1 with columns 1<=m<=n as
0;
-3,3;
-8,0,8;
-15,-5,5,15;
-24,-3,0,3,24;
-35,-21,-7,7,21,35;
-48,-2,-16,0,16,2,48;
		

Crossrefs

Programs

  • Magma
    [[Numerator(1/(n-k+1)^2 - 1/k^2): k in [1..n]]: n in [1..15]]; // G. C. Greubel, Oct 21 2018
  • Maple
    A165507 := proc(n,m) 1/(1+n-m)^2-1/m^2 ; numer(%) ; end proc:
  • Mathematica
    Table[Numerator[1/(n-k+1)^2 - 1/k^2], {n,1,15}, {k,1,n}]//Flatten (* G. C. Greubel, Oct 21 2018 *)
  • PARI
    for(n=1, 15, for(k=1, n, print1(numerator(1/(n-k+1)^2 - 1/k^2), ", "))) \\ G. C. Greubel, Oct 21 2018
    

Formula

T(n,m) = A173651(1+n,m), m>=1.

A173651 Triangle T(n,m) read by rows: numerator of 1/(n-m)^2-1/m^2, or -1 if m=0.

Original entry on oeis.org

-1, -1, 0, -1, -3, 3, -1, -8, 0, 8, -1, -15, -5, 5, 15, -1, -24, -3, 0, 3, 24, -1, -35, -21, -7, 7, 21, 35, -1, -48, -2, -16, 0, 16, 2, 48, -1, -63, -45, -1, -9, 9, 1, 45, 63, -1, -80, -15, -40, -5, 0, 5, 40, 15, 80, -1, -99, -77, -55, -33, -11, 11, 33, 55, 77, 99, -1, -120, -6, -8, -3, -24, 0, 24, 3, 8, 6, 120, -1, -143, -117, -91, -65, -39, -13, 13, 39, 65, 91, 117, 143, -1, -168, -35, -112, -21, -56, -7, 0, 7, 56, 21, 112, 35, 168, -1, -195, -165, -5, -105, -3, -5, -15
Offset: 1

Views

Author

Paul Curtz, Nov 24 2010

Keywords

Comments

This is triangle A165507 with an additional column T(n,0)= -1.
The triangle is obtained from the infinite array shown in the comment in A172370 by starting in its row n, column 0 and reading diagonally upwards up to row n=1, column n-1.

Examples

			The triangle starts in row n=1 with columns 0<=m<n as
-1;
-1,0,
-1,-3,3,
-1,-8,0,8,
-1,-15,-5,5,15,
-1,-24,-3,0,3,24,
-1,-35,-21,-7,7,21,35,
-1,-48,-2,-16,0,16,2,48,
-1,-63,-45,-1,-9,9,1,45,63,
		

Crossrefs

Cf. A165795.

Programs

  • Maple
    A173651 := proc(n,m) if m = 0 then -1 ; else 1/(n-m)^2-1/m^2 ; numer(%) ; end if; end proc:

A174413 Triangle T(n,m) with the denominator of 1/(n-m)^2-1/n^2, read by rows, 1<=m

Original entry on oeis.org

4, 36, 9, 144, 16, 16, 400, 225, 100, 25, 900, 144, 12, 9, 36, 1764, 1225, 784, 441, 196, 49, 3136, 576, 1600, 64, 576, 64, 64, 5184, 3969, 324, 2025, 1296, 81, 324, 81, 8100, 1600, 4900, 225, 100, 400, 900, 25, 100, 12100, 9801, 7744, 5929, 4356, 3025, 1936, 1089, 484, 121
Offset: 2

Views

Author

Paul Curtz, Mar 19 2010

Keywords

Comments

Obtained by deleting the last entry in each row of A061036 or by reversing rows in A120073.

Examples

			Triangle T(n,m) begins:
     4,
    36,    9,
   144,   16,   16,
   400,  225,  100,  25,
   900,  144,   12,   9,  36,
  1764, 1225,  784, 441, 196, 49,
  3136,  576, 1600,  64, 576, 64, 64,
		

Crossrefs

Cf. A165441, A172370 (numerators).

Programs

  • Maple
    A174413 := proc(n,m) 1/(n-m)^2-1/n^2 ; denom(%) ; end proc:
    seq(seq(A174413(n, k), k=1..n-1), n=2..11); # R. J. Mathar, Jan 27 2011
  • Mathematica
    T[n_, m_] := Denominator[1/(n - m)^2 - 1/n^2];
    Table[T[n, m], {n, 2, 11}, {m, 1, n-1}] // Flatten (* Jean-François Alcover, May 18 2018 *)

A174190 Triangle T(n,m) = numerator of 1/n^2-1/(n-m)^2, read by rows.

Original entry on oeis.org

0, 0, -3, 0, -5, -8, 0, -7, -3, -15, 0, -9, -16, -21, -24, 0, -11, -5, -1, -2, -35, 0, -13, -24, -33, -40, -45, -48, 0, -15, -7, -39, -3, -55, -15, -63, 0, -17, -32, -5, -56, -65, -8, -77, -80, 0, -19, -9, -51, -4, -3, -21, -91, -6, -99, 0, -21, -40, -57, -72, -85, -96
Offset: 1

Views

Author

Paul Curtz, Mar 11 2010

Keywords

Comments

The triangle contains the initial values of the array described in A172370.
Ignoring details of column indexing, these are the negated values of A061035.

Examples

			The triangle starts in column n=1, rows 0<=m<n as
0;
0,-3;
0,-5,-8;
0,-7,-3,-15;
0,-9,-16,-21,-24;
		

Extensions

Comments compactified with reference to A172370, formula and example added - R. J. Mathar, Nov 23 2010
Showing 1-6 of 6 results.