cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A172157 Triangle T(n,m) = numerator of 1/n^2 - 1/m^2, read by rows, with T(n,0) = -1.

Original entry on oeis.org

-1, -1, -3, -1, -8, -5, -1, -15, -3, -7, -1, -24, -21, -16, -9, -1, -35, -2, -1, -5, -11, -1, -48, -45, -40, -33, -24, -13, -1, -63, -15, -55, -3, -39, -7, -15, -1, -80, -77, -8, -65, -56, -5, -32, -17, -1, -99, -6, -91, -21, -3, -4, -51, -9, -19, -1, -120, -117, -112
Offset: 1

Views

Author

Paul Curtz, Jan 27 2010

Keywords

Comments

The triangle obtained by negating the values of the triangle A120072 and adding a row T(n,0) = -1.

Examples

			The full array of numerators starts in row n=1 with columns m>=0 as:
-1...0...3...8..15..24..35..48..63..80..99. A005563
-1..-3...0...5...3..21...2..45..15..77...6. A061037, A070262
-1..-8..-5...0...7..16...1..40..55...8..91. A061039
-1.-15..-3..-7...0...9...5..33...3..65..21. A061041
-1.-24.-21.-16..-9...0..11..24..39..56...3. A061043
-1.-35..-2..-1..-5.-11...0..13...7...5...4. A061045
-1.-48.-45.-40.-33.-24.-13...0..15..32..51. A061047
-1.-63.-15.-55..-3.-39..-7.-15...0..17...9. A061049
The triangle is the portion below the main diagonal, left from the zeros, 0<=m<n.
		

Crossrefs

Programs

  • Mathematica
    T[n_, 0] := -1; T[n_, k_] := 1/n^2 - 1/k^2; Table[Numerator[T[n, k]], {n, 1, 100}, {k, 0, n - 1}] // Flatten (* G. C. Greubel, Sep 19 2018 *)

A174680 Numerator of 1/16 - 1/n^2, using -1 at the pole where n=0.

Original entry on oeis.org

-1, -15, -3, -7, 0, 9, 5, 33, 3, 65, 21, 105, 1, 153, 45, 209, 15, 273, 77, 345, 3, 425, 117, 513, 35, 609, 165, 713, 3, 825, 221, 945, 63, 1073, 285, 1209, 5, 1353, 357, 1505, 99, 1665, 437, 1833, 15, 2009, 525, 2193, 143, 2385, 621, 2585, 21, 2793, 725, 3009, 195, 3233, 837, 3465, 14, 3705
Offset: 0

Views

Author

Paul Curtz, Nov 30 2010

Keywords

Comments

Extends the Brackett spectrum to negative principal quantum numbers in the spirit of A144477 and A171709.

Crossrefs

Programs

  • Mathematica
    Table[(n^2 - 16)/(GCD[n^2 - 16, 16*n^2]), {n, 0, 100}] (* G. C. Greubel, Sep 16 2018 *)
  • PARI
    {a(n) = (n^2 - 16) / gcd(n^2 - 16, 16 * n^2)}; /* Michael Somos, Jan 06 2011 */

Formula

a(n) = A061041(n), n >= 4.
a(n) = A172157(4,n), n >= 1.
a(n) = a(-n) for all n in Z.

Extensions

removed a(-4)-a(-1) since a(-n)=a(n) by Michael Somos, Jan 06 2011

A175779 Triangle T(n,m) read by rows: numerator of 1/(n-m)^2 - 1/n^2.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 5, 8, 1, 0, 7, 3, 15, 1, 0, 9, 16, 21, 24, 1, 0, 11, 5, 1, 2, 35, 1, 0, 13, 24, 33, 40, 45, 48, 1, 0, 15, 7, 39, 3, 55, 15, 63, 1, 0, 17, 32, 5, 56, 65, 8, 77, 80
Offset: 0

Views

Author

Paul Curtz, Dec 04 2010

Keywords

Comments

T(n,0) is set to zero at the pole m=0. T(n,n) is otherwise set to 1 at the pole n=m.
This is the triangle A061035 augmented by a diagonal of 1's.
Essentially the same information is in A120072, A166492, A172157 and A174233.

Examples

			The triangle starts in row n=0 with columns 0<=m<=n as:
.1.
.0..1.
.0..3..1.
.0..5..8..1.
.0..7..3.15..1.
.0..9.16.21.24..1.
.0.11..5..1..2.35..1.
.0.13.24.33.40.45.48..1.
.0.15..7.39..3.55.15.63..1.
.0.17.32..5.56.65..8.77.80..1.
.0.19..9.51..4..3.21.91..6.99..1.
		

Crossrefs

Cf. A172157, A166925, A171522 (denominators)

Programs

  • Mathematica
    T[n_, n_] := 1; T[n_, k_] := 1/(n - k)^2 - 1/n^2; Table[Numerator[T[n, k]], {n, 0, 20}, {k, 0, n}] // Flatten  (* G. C. Greubel, Sep 19 2018 *)
Showing 1-3 of 3 results.