A172398 Number of partitions of n into the sum of two refactorable numbers (A033950).
0, 1, 1, 1, 0, 0, 0, 0, 1, 2, 1, 0, 1, 1, 0, 1, 1, 1, 1, 2, 1, 0, 0, 1, 1, 2, 1, 0, 0, 1, 0, 1, 1, 0, 0, 2, 1, 1, 0, 0, 1, 2, 0, 1, 1, 0, 0, 3, 1, 0, 0, 1, 0, 1, 0, 0, 1, 2, 0, 1, 1, 1, 0, 2, 1, 0, 0
Offset: 1
Keywords
Examples
a(10)=2 because 10 = 1(refactorable) + 9(refactorable) = 2(refactorable) + 8(refactorable).
Links
- R. J. Mathar, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A033950.
Programs
-
Maple
with(numtheory); a:=n-> sum( ((1 + floor(i/tau(i)) - ceil(i/tau(i))) * (1 + floor((n-i)/tau(n-i)) - ceil((n-i)/tau(n-i))) ), i=1..floor(n/2)); # alternative isA033950 := proc(n) if modp(n,numtheory[tau](n)) = 0 then true; else false; end if; end proc: A172398 := proc(n) local a; a := 0 ; for i from 1 to n/2 do if isA033950(i) and isA033950(n-i) then a := a+1 ; end if; end do: a ; end proc: # R. J. Mathar, Jul 21 2015
-
Mathematica
a[n_] := IntegerPartitions[n, {2}, Select[Range[n], Divisible[#, DivisorSigma[0, #]]&]] // Length; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jun 04 2023 *)
Formula
a(n) = Sum_{i=1..floor(n/2)} ((1+floor(i/d(i)) - ceiling(i/d(i))) * (1 + floor((n-i)/d(n-i)) - ceiling((n-i)/d(n-i)))). - Wesley Ivan Hurt, Jan 12 2013
Extensions
Corrected by D. S. McNeil, Nov 20 2010