cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172438 Numbers k such that tau(k^2+1) - tau(k^2) = 1 where the function tau(k) is the number of positive divisors of k.

Original entry on oeis.org

1, 3, 5, 11, 19, 27, 29, 59, 61, 71, 79, 101, 125, 131, 139, 181, 199, 242, 243, 271, 333, 349, 379, 387, 409, 423, 449, 461, 477, 521, 569, 571, 603, 631, 641, 661, 739, 747, 751, 772, 788, 821, 881, 929, 991, 1017, 1031, 1039, 1051, 1058, 1069, 1075, 1083
Offset: 1

Views

Author

Michel Lagneau, Feb 02 2010

Keywords

Comments

Square roots of perfect squares in A055927. [Juri-Stepan Gerasimov, Apr 06 2011]

Examples

			k=1, tau(2) - tau(1) = 2 - 1 = 1.
k=3, tau(10) - tau(9) = 4 - 3 = 1.
k=5, tau(26) - tau(25) = 4 - 3 = 1.
k=387, tau(149770)- tau(149769) = 16 - 15 = 1.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Chap. II. (For inequalities, etc.)

Crossrefs

Programs

  • Magma
    [m:m in [1..1100]| #Divisors(m^2+1) - #Divisors(m^2) eq 1]; // Marius A. Burtea, Jul 12 2019
  • Maple
    with(numtheory): for n from 1 to 100000 do; if tau(n^2+1)-tau(n^2)= 1 then print(n); else fi ; od;
  • Mathematica
    dsQ[n_]:=Module[{n2=n^2},DivisorSigma[0,n2+1]-DivisorSigma[0,n2]==1]; Select[Range[1200],dsQ] (* Harvey P. Dale, May 05 2011 *)
    Select[Sqrt[#]&/@Flatten[Position[Partition[DivisorSigma[0,Range[1200000]],2,1],?(#[[2]]-#[[1]]==1&),1,Heads->False]],IntegerQ] (* _Harvey P. Dale, Apr 09 2022 *)