cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172497 Triangle T(n, k) = round( c(n)/(c(k)*c(n-k)) ) where c(n) = Product_{j=1..n} A029826(j+10), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 4, 2, 2, 1, 1, 3, 6, 6, 6, 6, 3, 1, 1, 2, 6, 12, 6, 12, 6, 2, 1, 1, 4, 8, 24, 24, 24, 24, 8, 4, 1, 1, 3, 12, 24, 36, 72, 36, 24, 12, 3, 1, 1, 5, 15, 60, 60, 180, 180, 60, 60, 15, 5, 1, 1, 5, 25, 75, 150, 300, 450, 300, 150, 75, 25, 5, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 05 2010

Keywords

Examples

			The triangle begins as:
  1;
  1, 1;
  1, 1,  1;
  1, 1,  1,  1;
  1, 2,  2,  2,  1;
  1, 1,  2,  2,  1,  1;
  1, 2,  2,  4,  2,  2,  1;
  1, 3,  6,  6,  6,  6,  3,  1;
  1, 2,  6, 12,  6, 12,  6,  2,  1;
  1, 4,  8, 24, 24, 24, 24,  8,  4, 1;
  1, 3, 12, 24, 36, 72, 36, 24, 12, 3, 1;
		

Crossrefs

Cf. A029826.

Programs

  • Magma
    R:= PowerSeriesRing(Integers(), 100);
    b:= Coefficients(R!( 1/(1+x-x^3-x^4-x^5-x^6-x^7+x^9+x^10) ));
    c:= func< n | (&*[b[j]: j in [10..n+10]]) >;
    T:= func< n,k | Round(c(n)/(c(k)*c(n-k))) >;
    [T(n,k): k in [0..n], n in [1..12]]; // G. C. Greubel, Apr 20 2021
    
  • Mathematica
    b:= Drop[CoefficientList[Series[1/(1+x-x^3-x^4-x^5-x^6-x^7+x^9+x^10), {x,0,100}], x], 10];
    c[n_]:= Product[b[[j]], {j,n}];
    T[n_, k_]:= Round[c[n]/(c[k]*c[n-k])];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Apr 20 2021 *)
  • Sage
    @CachedFunction
    def A029826_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/(1+x-x^3-x^4-x^5-x^6-x^7+x^9+x^10) ).list()
    b=A029826_list(130)
    def c(n): return product(b[j] for j in (9..n+9))
    def T(n,k): return round(c(n)/(c(k)*c(n-k)))
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 20 2021

Formula

T(n, k) = round( c(n)/(c(k)*c(n-k)) ) where c(n) = Product_{j=1..n} A029826(j+10).

Extensions

Definition corrected and edited by G. C. Greubel, Apr 20 2021