A172609 a(n) = (8n)!/(8!^n).
1, 1, 12870, 9465511770, 99561092450391000, 7656714453153197981835000, 2889253496242619386328267523990000, 4104167472585675600759440022842715359250000, 18165723931630806756964027928179555634194028454000000
Offset: 0
Examples
a(3) = (8*3)!/(8!^3) = 9465511770 is the number of permutations of a multiset that contains 3 different elements 8 times, e.g., {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}.
Links
- Tilman Piesk, Table of n, a(n) for n = 0..54 (first 12 terms from R. H. Hardin)
Programs
-
Magma
[Factorial(8*n)/(40320^n): n in [0..20]]; // Vincenzo Librandi, Nov 01 2014
-
Maple
A172609:=n->(8*n)!/(40320^n): seq(A172609(n), n=0..10); # Wesley Ivan Hurt, Nov 01 2014
-
Mathematica
Table[(8 n)! / (40320^n), {n, 0, 10}] (* Vincenzo Librandi, Nov 01 2014 *)
Formula
a(n) = (8n)!/(8!^n).
Extensions
Name changed by Tilman Piesk, Oct 30 2014
Comments