A172613 a(n) = (9n)!/(9!^n).
1, 1, 48620, 227873431500, 21452752266265320000, 19010638202652030712978200000, 101097362223624462291180422369532000000, 2392741010223442438553822446842770682716580000000, 203653377853981828616656775313699668953042169048889600000000
Offset: 0
Examples
a(3) = (9*3)!/(9!^3) = 227873431500 is the number of permutations of a multiset that contains 3 different elements, each occurring 9 times, e.g., {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3}.
Links
- Tilman Piesk, Table of n, a(n) for n = 0..54 (first 11 terms from R. H. Hardin)
Programs
-
Magma
[Factorial(9*n)/(362880^n): n in [0..20]]; // Vincenzo Librandi, Nov 01 2014
-
Maple
A172613:=n->(9*n)!/(362880^n): seq(A172613(n), n=0..10); # Wesley Ivan Hurt, Nov 01 2014
-
Mathematica
Table[(9 n)! / (362880^n), {n, 0, 10}] (* Vincenzo Librandi, Nov 01 2014 *)
Formula
a(n) = (9n)!/(9!^n).
Extensions
Name changed by Tilman Piesk, Oct 30 2014
Comments