A173008 Triangle T(n,k) read by rows: coefficient [x^k] of the polynomial Product_{i=1..n} (x + q^i) in row n, column 0<=k<=n, and q = 4.
1, 4, 1, 64, 20, 1, 4096, 1344, 84, 1, 1048576, 348160, 22848, 340, 1, 1073741824, 357564416, 23744512, 371008, 1364, 1, 4398046511104, 1465657589760, 97615085568, 1543393280, 5957952, 5460, 1, 72057594037927936, 24017731997138944, 1600791219535872, 25384570585088, 99158478848, 95414592, 21844, 1
Offset: 0
Examples
Triangle begins as: 1; 4, 1; 64, 20, 1; 4096, 1344, 84, 1; 1048576, 348160, 22848, 340, 1; 1073741824, 357564416, 23744512, 371008, 1364, 1; 4398046511104, 1465657589760, 97615085568, 1543393280, 5957952, 5460, 1;
Links
- Robert Israel, Table of n, a(n) for n = 0..1430
Crossrefs
Programs
-
Magma
function T(n,k,q) if k lt 0 or k gt n then return 0; elif k eq n then return 1; else return q^n*T(n-1,k,q) + T(n-1,k-1,q); end if; return T; end function; [T(n,k,4): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 20 2021
-
Maple
P:= 1: A:= 1: for n from 1 to 12 do P:= expand(P*(x+4^n)); A:= A, seq(coeff(P,x,j),j=0..n) od: A; # Robert Israel, Aug 12 2015
-
Mathematica
(* First program *) p[x_, n_, q_]= If[n==0, 1, Product[x + q^i, {i,n}]]; Table[CoefficientList[p[x, n, 4], x], {n, 0, 10}]//Flatten (* modified by G. C. Greubel, Feb 20 2021 *) (* Second program *) T[n_, k_, q_]:= If[k<0 || k>n, 0, If[k==n, 1, q^n*T[n-1,k,q] +T[n-1,k-1,q] ]]; Table[T[n,k,4], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 20 2021 *)
-
Sage
def T(n, k, q): if (k<0 or k>n): return 0 elif (k==n): return 1 else: return q^n*T(n-1,k,q) + T(n-1,k-1,q) flatten([[T(n,k,4) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Feb 20 2021
Formula
T(n,k) = 4^n*T(n-1,k) + T(n-1,k-1) with T(0,0)=1. - Philippe Deléham, Oct 01 2011
Sum_{k=0..n} T(n, k, 4) = A309327(n+1). - G. C. Greubel, Feb 20 2021
Comments