cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173009 Expansion of o.g.f. x*(1 - x + x^2)/(1 -3*x +x^2 +3*x^3 -2*x^4).

Original entry on oeis.org

0, 1, 2, 6, 13, 29, 60, 124, 251, 507, 1018, 2042, 4089, 8185, 16376, 32760, 65527, 131063, 262134, 524278, 1048565, 2097141, 4194292, 8388596, 16777203, 33554419, 67108850, 134217714, 268435441, 536870897
Offset: 1

Views

Author

Thomas Wieder, Feb 07 2010

Keywords

Comments

The mean value m(n) = Sum_{k=0..(2^n -n-1)} k*p(n,k) of the distribution function p(n,k) = binomial(2^n-n-1, k)/2^(2^n-n-1) is 0., 0.5, 2., 5.5, 13., 28.5, 60., 123.5, 251., 506.5, 1018., 2041.5, 4089., 8184.5... We set a(n) = round(m(n)).
The half-integer sequence h(n) = 0, 1/2, 2, 11/2, 13, 57/2, 60, 247/2, 251, 1013/2, 1018, 4083/2, 4089, 16369/2, 16376, 65519/2, 65527, ... is the binomial transform of 0, 1/2, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

Crossrefs

Programs

  • Magma
    [Round((2^n -n-1)/2): n in [1..40]]; // G. C. Greubel, Feb 20 2021
  • Maple
    A173009:= n-> round((2^n -n-1)/2); seq(A173009(n), n=1..40); # G. C. Greubel, Feb 20 2021
  • Mathematica
    Table[Ceiling[(2^n-n-1)/2],{n,30}] (* or *) LinearRecurrence[{3,-1,-3,2},{0,1,2,6},30] (* Harvey P. Dale, Nov 16 2011 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; 2,-3,-1,3]^(n-1)*[0;1;2;6])[1,1] \\ Charles R Greathouse IV, Apr 18 2020
    
  • Sage
    [round((2^n -n-1)/2) for n in (1..40)] # G. C. Greubel, Feb 20 2021
    

Formula

G.f.: x*(1 - x + x^2)/(1 -3*x +x^2 +3*x^3 -2*x^4).
m(n) = (1/4)*2^n - 1/2 + m*(n-1) with m(1)=0 and a(n) = round(m(n)).
a(1)=0, a(2)=1, a(3)=2, a(4)=6, a(n) = 3*a(n-1) -a(n-2) -3*a(n-3) +2*a(n-4). - Harvey P. Dale, Nov 16 2011
a(n) = round(A000295(n)/2). - G. C. Greubel, Feb 20 2021