A173009 Expansion of o.g.f. x*(1 - x + x^2)/(1 -3*x +x^2 +3*x^3 -2*x^4).
0, 1, 2, 6, 13, 29, 60, 124, 251, 507, 1018, 2042, 4089, 8185, 16376, 32760, 65527, 131063, 262134, 524278, 1048565, 2097141, 4194292, 8388596, 16777203, 33554419, 67108850, 134217714, 268435441, 536870897
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-3,2).
Programs
-
Magma
[Round((2^n -n-1)/2): n in [1..40]]; // G. C. Greubel, Feb 20 2021
-
Maple
A173009:= n-> round((2^n -n-1)/2); seq(A173009(n), n=1..40); # G. C. Greubel, Feb 20 2021
-
Mathematica
Table[Ceiling[(2^n-n-1)/2],{n,30}] (* or *) LinearRecurrence[{3,-1,-3,2},{0,1,2,6},30] (* Harvey P. Dale, Nov 16 2011 *)
-
PARI
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; 2,-3,-1,3]^(n-1)*[0;1;2;6])[1,1] \\ Charles R Greathouse IV, Apr 18 2020
-
Sage
[round((2^n -n-1)/2) for n in (1..40)] # G. C. Greubel, Feb 20 2021
Formula
G.f.: x*(1 - x + x^2)/(1 -3*x +x^2 +3*x^3 -2*x^4).
m(n) = (1/4)*2^n - 1/2 + m*(n-1) with m(1)=0 and a(n) = round(m(n)).
a(1)=0, a(2)=1, a(3)=2, a(4)=6, a(n) = 3*a(n-1) -a(n-2) -3*a(n-3) +2*a(n-4). - Harvey P. Dale, Nov 16 2011
a(n) = round(A000295(n)/2). - G. C. Greubel, Feb 20 2021
Comments