cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173010 a(n) = round((2^n - n - 1)/4).

Original entry on oeis.org

0, 0, 1, 3, 7, 14, 30, 62, 126, 253, 509, 1021, 2045, 4092, 8188, 16380, 32764, 65531, 131067, 262139, 524283, 1048570, 2097146, 4194298, 8388602, 16777209, 33554425, 67108857, 134217721, 268435448, 536870904, 1073741816, 2147483640
Offset: 1

Views

Author

Thomas Wieder, Feb 07 2010

Keywords

Comments

The variance v(n) = Sum_{k=0..2^n-n-1} (k - m(n))^2*p(n,k) of the distribution function p(n,k) = binomial(2^n -n-1, k)/2^(2^n -n-1) with m(n) its mean value is 0., 0.25, 1., 2.75, 6.5, 14.25, 30., 61.75, 125.5, 253.25, 509., 1020.75, 2044.5, 4092.25, 8188... We set a(n) = round(v(n)).

Crossrefs

Programs

  • Magma
    [Round((2^n -n-1)/4): n in [1..40]]; // G. C. Greubel, Feb 20 2021
  • Maple
    A173010:= round((2^n -n-1)/4); seq(A173010(n), n=1..40); # G. C. Greubel, Feb 20 2021
  • Mathematica
    nn:=33; Rest[CoefficientList[Series[x^3*(1-x^3+x^4)/(1-3*x+2*x^2-2*x^6-x^4+3*x^5),{x,0,nn}],x]] (* Georg Fischer, Apr 17 2020 *)
    LinearRecurrence[{3,-2,0,1,-3,2},{0,0,1,3,7,14,30},40] (* Harvey P. Dale, Feb 06 2023 *)
  • Sage
    [round((2^n -n -1)/4) for n in (1..40)] # G. C. Greubel, Feb 20 2021
    

Formula

a(n) = round((2^n -n -1)/4).
G.f.: x^3*(1 -x^3 +x^4)/(1 -3*x +2*x^2 -x^4 +3*x^5 -2*x^6). [sign corrected by Georg Fischer, Apr 17 2020]
v(n) = (1/8)*2^n -1/4 + v(-1+n) with v(1) = 0 and a(n) = round(v(n)).
a(n) = round(A000295(n)/4). - G. C. Greubel, Feb 20 2021

Extensions

Edited by Georg Fischer and Joerg Arndt, Apr 17 2020