A173019 a(n) is the value of row n in triangle A083093 seen as ternary number.
1, 4, 16, 28, 112, 448, 784, 3136, 12301, 19684, 78736, 314944, 551152, 2204608, 8818432, 15432256, 61729024, 242132884, 387459856, 1549839424, 6199180549, 10848875968, 43395503872, 173577055372, 303766932781, 1215067731124
Offset: 0
Examples
a(9) = 3^(3^2) + 1 = 19684; a(8) = (5*19684 - 12)/8 = 12301; a(10) = 4*19684 = 78736.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- P. Mathonet, M. Rigo, M. Stipulanti and N. Zénaïdi, On digital sequences associated with Pascal's triangle, arXiv:2201.06636 [math.NT], 2022.
Crossrefs
Programs
-
Haskell
a173019 = foldr (\t v -> 3 * v + t) 0 . map toInteger . a083093_row -- Reinhard Zumkeller, Jul 11 2013
-
Mathematica
FromDigits[#, 3] & /@ Table[Mod[Binomial[n, k], 3], {n, 0, 25}, {k, 0, n}] (* Michael De Vlieger, Oct 31 2018 *)
-
PARI
a(n) = my(v = vector(n+1, k, binomial(n, k-1))); fromdigits(apply(x->x % 3, v), 3); \\ Michel Marcus, Nov 21 2018
-
Python
from math import prod, comb from gmpy2 import digits def A173019(n): if n==0: return 1 c, l = '', len(s:=digits(n,3)) for k in range(m:=n+2>>1): t = digits(k,3).zfill(l) c += str(prod(comb(int(s[i]),int(t[i]))%3 for i in range(l))%3) return int(c+c[m-2+(n&1)::-1],3) # Chai Wah Wu, Jul 30 2025
Formula
a(3^n) = 3^(3^n) + 1.
a(3^n) = (8*a((3^n)-1) + 12)/5. [5*a(3^n) = 1200...0012 (base 3), 8*a((3^n)-1) = (22)(1212...2121) = 11222...2202 (base 3).]
For n > 0, a((3^n)+1) = 4*a(3^n) and a((3^n)+2) = 4*a((3^n)+1).
a(n) = Sum_{k=0..n} A083093(n,k) * 3^k. - Reinhard Zumkeller, Jul 11 2013
Extensions
a(13) and a(19) corrected and name clarified by Tom Edgar, Oct 11 2015
Comments