A227434 Duplicate of A173019.
1, 4, 16, 28, 112, 448, 784, 3136, 12301, 19684, 78736, 314944, 551152, 2204608, 8818432, 15432256, 61729024, 242132884, 387459856
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Given a(5)=51, a(6)=85 since a(5) XOR 2*a(5) = 51 XOR 102 = 85. From _Daniel Forgues_, Jun 18 2011: (Start) a(0) = 1 (empty product); a(1) = 3 = 1 * F_0 = a(2^0+0) = a(0) * F_0; a(2) = 5 = 1 * F_1 = a(2^1+0) = a(0) * F_1; a(3) = 15 = 3 * 5 = F_0 * F_1 = a(2^1+1) = a(1) * F_1; a(4) = 17 = 1 * F_2 = a(2^2+0) = a(0) * F_2; a(5) = 51 = 3 * 17 = F_0 * F_2 = a(2^2+1) = a(1) * F_2; a(6) = 85 = 5 * 17 = F_1 * F_2 = a(2^2+2) = a(2) * F_2; a(7) = 255 = 3 * 5 * 17 = F_0 * F_1 * F_2 = a(2^2+3) = a(3) * F_2; ... (End)
a001317 = foldr (\u v-> 2*v + u) 0 . map toInteger . a047999_row -- Reinhard Zumkeller, Nov 24 2012 (Scheme, with memoization-macro definec, two variants) (definec (A001317 n) (if (zero? n) 1 (A048724 (A001317 (- n 1))))) (definec (A001317 n) (if (zero? n) 1 (A048720bi 3 (A001317 (- n 1))))) ;; Where A048720bi implements the dyadic function given in A048720. ;; Antti Karttunen, Feb 10 2016
[&+[(Binomial(n, i) mod 2)*2^i: i in [0..n]]: n in [0..41]]; // Vincenzo Librandi, Feb 12 2016
A001317 := proc(n) local k; add((binomial(n,k) mod 2)*2^k, k=0..n); end;
a[n_] := Nest[ BitXor[#, BitShiftLeft[#, 1]] &, 1, n]; Array[a, 42, 0] (* Joel Madigan (dochoncho(AT)gmail.com), Dec 03 2007 *) NestList[BitXor[#,2#]&,1,50] (* Harvey P. Dale, Aug 02 2021 *)
a(n)=sum(i=0,n,(binomial(n,i)%2)*2^i)
a=1; for(n=0, 66, print1(a,", "); a=bitxor(a,a<<1) ); \\ Joerg Arndt, Mar 27 2013
A001317(n,a=1)={for(k=1,n,a=bitxor(a,a<<1));a} \\ M. F. Hasler, Jun 06 2016
a(n) = subst(lift(Mod(1+'x,2)^n), 'x, 2); \\ Gheorghe Coserea, Nov 09 2017
from sympy import binomial def a(n): return sum([(binomial(n, i)%2)*2**i for i in range(n + 1)]) # Indranil Ghosh, Apr 11 2017
def A001317(n): return int(''.join(str(int(not(~n&k))) for k in range(n+1)),2) # Chai Wah Wu, Feb 04 2022
. Rows 0 .. 3^3: . 0: 1 . 1: 1 1 . 2: 1 2 1 . 3: 1 0 0 1 . 4: 1 1 0 1 1 . 5: 1 2 1 1 2 1 . 6: 1 0 0 2 0 0 1 . 7: 1 1 0 2 2 0 1 1 . 8: 1 2 1 2 1 2 1 2 1 . 9: 1 0 0 0 0 0 0 0 0 1 . 10: 1 1 0 0 0 0 0 0 0 1 1 . 11: 1 2 1 0 0 0 0 0 0 1 2 1 . 12: 1 0 0 1 0 0 0 0 0 1 0 0 1 . 13: 1 1 0 1 1 0 0 0 0 1 1 0 1 1 . 14: 1 2 1 1 2 1 0 0 0 1 2 1 1 2 1 . 15: 1 0 0 2 0 0 1 0 0 1 0 0 2 0 0 1 . 16: 1 1 0 2 2 0 1 1 0 1 1 0 2 2 0 1 1 . 17: 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 . 18: 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 . 19: 1 1 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 1 1 . 20: 1 2 1 0 0 0 0 0 0 2 1 2 0 0 0 0 0 0 1 2 1 . 21: 1 0 0 1 0 0 0 0 0 2 0 0 2 0 0 0 0 0 1 0 0 1 . 22: 1 1 0 1 1 0 0 0 0 2 2 0 2 2 0 0 0 0 1 1 0 1 1 . 23: 1 2 1 1 2 1 0 0 0 2 1 2 2 1 2 0 0 0 1 2 1 1 2 1 . 24: 1 0 0 2 0 0 1 0 0 2 0 0 1 0 0 2 0 0 1 0 0 2 0 0 1 . 25: 1 1 0 2 2 0 1 1 0 2 2 0 1 1 0 2 2 0 1 1 0 2 2 0 1 1 . 26: 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 . 27: 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 . - _Reinhard Zumkeller_, Jul 11 2013
a083093 n k = a083093_tabl !! n !! k a083093_row n = a083093_tabl !! n a083093_tabl = iterate (\ws -> zipWith (\u v -> mod (u + v) 3) ([0] ++ ws) (ws ++ [0])) [1] -- Reinhard Zumkeller, Jul 11 2013
/* As triangle: */ [[Binomial(n,k) mod 3: k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Feb 15 2016
A083093 := proc(n,k) modp(binomial(n,k),3) ; end proc: seq(seq(A083093(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Jul 26 2017
Mod[ Flatten[ Table[ Binomial[n, k], {n, 0, 13}, {k, 0, n}]], 3] (* Robert G. Wilson v, Jan 19 2004 *)
from sympy import binomial def T(n, k): return binomial(n, k) % 3 for n in range(21): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Jul 26 2017
from math import comb, isqrt def A083093(n): def f(m,k): if m<3 and k<3: return comb(m,k)%3 c,a = divmod(m,3) d,b = divmod(k,3) return f(c,d)*f(a,b)%3 return f(r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)),n-comb(r+1,2)) # Chai Wah Wu, Apr 30 2025
Comments