A173036 a(n) = binomial(n+1, 2) + 13.
13, 14, 16, 19, 23, 28, 34, 41, 49, 58, 68, 79, 91, 104, 118, 133, 149, 166, 184, 203, 223, 244, 266, 289, 313, 338, 364, 391, 419, 448, 478, 509, 541, 574, 608, 643, 679, 716, 754, 793, 833, 874, 916, 959, 1003, 1048, 1094, 1141, 1189, 1238, 1288, 1339, 1391
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A000217.
Programs
-
Magma
[13 + Binomial(n+1,2): n in [0..60]]; // G. C. Greubel, Feb 19 2021
-
Maple
A173036:= n-> 13 + binomial(n+1,2); seq(A173036(n), n=0..60) # G. C. Greubel, Feb 19 2021
-
Mathematica
Table[n*(n+1)/2 +13, {n,0,5!}]
-
PARI
a(n)=n*(n+1)/2 + 13 \\ Charles R Greathouse IV, Jun 16 2017
-
Sage
[13 + binomial(n+1,2) for n in (0..60)] # G. C. Greubel, Feb 19 2021
Formula
a(n) = A000217(n) + 13.
From G. C. Greubel, Feb 19 2021: (Start)
G.f.: (13 -25*x +13*x^2)/(1-x)^3.
E.g.f.: (26 +2*x +x^2)*exp(x)/2. (End)
Sum_{n>=0} 1/a(n) = 2*Pi*tanh(sqrt(103)*Pi/2)/sqrt(103). - Amiram Eldar, Dec 13 2022
Extensions
Title and offset changed by G. C. Greubel, Feb 19 2021
Comments