cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173044 Product plus sum of five consecutive nonnegative numbers.

Original entry on oeis.org

10, 135, 740, 2545, 6750, 15155, 30280, 55485, 95090, 154495, 240300, 360425, 524230, 742635, 1028240, 1395445, 1860570, 2441975, 3160180, 4037985, 5100590, 6375715, 7893720, 9687725, 11793730, 14250735, 17100860, 20389465, 24165270, 28480475, 33390880, 38956005
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(n+2)*(n^4 +8*n^3 +19*n^2 +12*n +5): n in [0..40]]; // G. C. Greubel, Feb 19 2021
  • Maple
    A173044:= n-> (n+2)*(n^4 +8*n^3 +19*n^2 +12*n +5); seq(A173044(n), n=0..40) # G. C. Greubel, Feb 19 2021
  • Mathematica
    a[n_]:= n*(n+1)*(n+2)*(n+3)*(n+4) + n + (n+1)+(n+2)+(n+3)+(n+4);
    Table[a[n],{n,0,5!}]
  • Sage
    [(n+2)*(n^4 +8*n^3 +19*n^2 +12*n +5) for n in (0..40)] # G. C. Greubel, Feb 19 2021
    

Formula

a(n) = n*(n+1)*(n+2)*(n+3)*(n+4) +n +(n+1) +(n+2) +(n+3) +(n+4).
G.f.: 5*(2 +15*x +16*x^2 -14*x^3 +6*x^4 -x^5)/(1-x)^6. - Colin Barker, Jun 25 2012
a(n) = (n+2)*(n^4 +8*n^3 +19*n^2 +12*n +5) = n^5 +10*n^4 +35*n^3 +50*n^2 +29*n +10. - Bruno Berselli, Jun 25 2012
E.g.f.: (10 +125*x +240*x^2 +120*x^3 +20*x^4 +x^5)*exp(x). - G. C. Greubel, Feb 19 2021

Extensions

Offset corrected by G. C. Greubel, Feb 19 2021