A173044 Product plus sum of five consecutive nonnegative numbers.
10, 135, 740, 2545, 6750, 15155, 30280, 55485, 95090, 154495, 240300, 360425, 524230, 742635, 1028240, 1395445, 1860570, 2441975, 3160180, 4037985, 5100590, 6375715, 7893720, 9687725, 11793730, 14250735, 17100860, 20389465, 24165270, 28480475, 33390880, 38956005
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
Magma
[(n+2)*(n^4 +8*n^3 +19*n^2 +12*n +5): n in [0..40]]; // G. C. Greubel, Feb 19 2021
-
Maple
A173044:= n-> (n+2)*(n^4 +8*n^3 +19*n^2 +12*n +5); seq(A173044(n), n=0..40) # G. C. Greubel, Feb 19 2021
-
Mathematica
a[n_]:= n*(n+1)*(n+2)*(n+3)*(n+4) + n + (n+1)+(n+2)+(n+3)+(n+4); Table[a[n],{n,0,5!}]
-
Sage
[(n+2)*(n^4 +8*n^3 +19*n^2 +12*n +5) for n in (0..40)] # G. C. Greubel, Feb 19 2021
Formula
a(n) = n*(n+1)*(n+2)*(n+3)*(n+4) +n +(n+1) +(n+2) +(n+3) +(n+4).
G.f.: 5*(2 +15*x +16*x^2 -14*x^3 +6*x^4 -x^5)/(1-x)^6. - Colin Barker, Jun 25 2012
a(n) = (n+2)*(n^4 +8*n^3 +19*n^2 +12*n +5) = n^5 +10*n^4 +35*n^3 +50*n^2 +29*n +10. - Bruno Berselli, Jun 25 2012
E.g.f.: (10 +125*x +240*x^2 +120*x^3 +20*x^4 +x^5)*exp(x). - G. C. Greubel, Feb 19 2021
Extensions
Offset corrected by G. C. Greubel, Feb 19 2021