A173046 Triangle T(n, k, q) = binomial(n, k) + q^n*binomial(n-2, k-1) - 1 with T(n, 0) = T(n, n) = 1 and q = 2, read by rows.
1, 1, 1, 1, 5, 1, 1, 10, 10, 1, 1, 19, 37, 19, 1, 1, 36, 105, 105, 36, 1, 1, 69, 270, 403, 270, 69, 1, 1, 134, 660, 1314, 1314, 660, 134, 1, 1, 263, 1563, 3895, 5189, 3895, 1563, 263, 1, 1, 520, 3619, 10835, 18045, 18045, 10835, 3619, 520, 1, 1, 1033, 8236, 28791, 57553, 71931, 57553, 28791, 8236, 1033, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 5, 1; 1, 10, 10, 1; 1, 19, 37, 19, 1; 1, 36, 105, 105, 36, 1; 1, 69, 270, 403, 270, 69, 1; 1, 134, 660, 1314, 1314, 660, 134, 1; 1, 263, 1563, 3895, 5189, 3895, 1563, 263, 1; 1, 520, 3619, 10835, 18045, 18045, 10835, 3619, 520, 1; 1, 1033, 8236, 28791, 57553, 71931, 57553, 28791, 8236, 1033, 1;
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
Crossrefs
Programs
-
Magma
T:= func< n,k,q | k eq 0 or k eq n select 1 else Binomial(n,k) + q^n*Binomial(n-2,k-1) -1 >; [T(n,k,2): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 16 2021
-
Mathematica
T[n_, m_, q_]:= If[k==0 || k==n, 1, Binomial[n, k] +(q^n)*Binomial[n-2, k-1] -1]; Table[T[n,k,2], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 16 2021 *)
-
Sage
def T(n,k,q): return 1 if (k==0 or k==n) else binomial(n,k) + q^n*binomial(n-2,k-1) -1 flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 16 2021
Formula
T(n, k, q) = binomial(n, k) + q^n*binomial(n-2, k-1) - 1 with T(n, 0) = T(n, n) = 1 and q = 2.
Sum_{k=0..n} T(n, k, 2) = 4^(n-1) + 2^n - (n-1) - (5/4)*[n=0] = A000302(n-1) + A132045(n) - (5/4)*[n=0]. - [n=1]. - G. C. Greubel, Feb 16 2021
Extensions
Edited by G. C. Greubel, Feb 16 2021
Comments