cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173047 Triangle T(n, k, q) = binomial(n, k) + q^n*binomial(n-2, k-1) - 1 with T(n, 0) = T(n, n) = 1 and q = 3, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 10, 1, 1, 29, 29, 1, 1, 84, 167, 84, 1, 1, 247, 738, 738, 247, 1, 1, 734, 2930, 4393, 2930, 734, 1, 1, 2193, 10955, 21904, 21904, 10955, 2193, 1, 1, 6568, 39393, 98470, 131289, 98470, 39393, 6568, 1, 1, 19691, 137816, 413426, 689030, 689030, 413426, 137816, 19691, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 08 2010

Keywords

Comments

The triangle sequences having the form T(n,k,q) = binomial(n, k) + q^n*binomial(n-2, k-1) - 1 have the row sums Sum_{k=0..n} T(n,k,q) = 2^(n-2)*q^n + 2^n - (n-1) - (5/4)*[n=0] -(q/2)*[n=1]. - G. C. Greubel, Feb 16 2021

Examples

			Ttiangle begins as:
  1;
  1,     1;
  1,    10,      1;
  1,    29,     29,      1;
  1,    84,    167,     84,      1;
  1,   247,    738,    738,    247,      1;
  1,   734,   2930,   4393,   2930,    734,      1;
  1,  2193,  10955,  21904,  21904,  10955,   2193,      1;
  1,  6568,  39393,  98470, 131289,  98470,  39393,   6568,     1;
  1, 19691, 137816, 413426, 689030, 689030, 413426, 137816, 19691, 1;
		

Crossrefs

Cf. A132044 (q=0), A173075 (q=1), A173046 (q=2), this sequence (q=3).

Programs

  • Magma
    T:= func< n,k,q | k eq 0 or k eq n select 1 else Binomial(n,k) + q^n*Binomial(n-2,k-1) -1 >;
    [T(n,k,3): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 16 2021
  • Mathematica
    T[n_, k_, q_]:= If[k==0 || k==n, 1, Binomial[n, k] +(q^n)*Binomial[n-2, k-1] -1];
    Table[T[n,k,3], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 16 2021 *)
  • Sage
    def T(n,k,q): return 1 if (k==0 or k==n) else binomial(n,k) + q^n*binomial(n-2,k-1) -1
    flatten([[T(n,k,3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 16 2021
    

Formula

T(n, k, q) = binomial(n, k) + q^n*binomial(n-2, k-1) - 1 with T(n, 0) = T(n, n) = 1 and q = 3.
Sum_{k=0..n} T(n, k, 3) = (1/4)*(6^n + 2^(n+2) - 4*(n-1) - 5*[n=0] - 6*[n=1]). - G. C. Greubel, Feb 16 2021

Extensions

Edited by G. C. Greubel, Feb 16 2021