cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173049 Triangle T(n, k) = [x^k](p(x, n, q)) where p(x,n,q) = Product_{j=1..n} (x + q^j) + Product_{j=1..n} (x*q^j + 1), p(x, 0, q) = 1, and q = 3, read by rows.

Original entry on oeis.org

1, 4, 4, 28, 24, 28, 730, 390, 390, 730, 59050, 29280, 7020, 29280, 59050, 14348908, 7145292, 914760, 914760, 7145292, 14348908, 10460353204, 5223003240, 650485836, 49397040, 650485836, 5223003240, 10460353204, 22876792454962, 11433166054158, 1427188022442, 55340738838, 55340738838, 1427188022442, 11433166054158, 22876792454962
Offset: 0

Views

Author

Roger L. Bagula, Feb 08 2010

Keywords

Examples

			Triangle begins as:
            1;
            4,          4;
           28,         24,        28;
          730,        390,       390,      730;
        59050,      29280,      7020,    29280,     59050;
     14348908,    7145292,    914760,   914760,   7145292,   14348908;
  10460353204, 5223003240, 650485836, 49397040, 650485836, 5223003240, 10460353204;
		

Crossrefs

Cf. A134058 (q=1), A173048 (q=2), this sequence (q=3).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50);
    p:= func< x,n,q | n eq 0 select 1 else (&*[x+q^j: j in [1..n]]) + (&*[1+q^j*x: j in [1..n]]) >;
    T:= func< n,q | Coefficients(R!( p(x,n,q) )) >;
    [T(n,3): n in [0..10]]; // G. C. Greubel, Apr 26 2021
  • Mathematica
    p[x_, n_, q_]:= If[n==0, 1, Product[x+q^j, {j,n}] + Product[x*q^j +1, {j,n}]];
    T[n_, k_, q_]:= SeriesCoefficient[p[x,n,q], {x,0,k}];
    Table[T[n, k, 3], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Apr 26 2021 *)

Formula

T(n, k) = [x^k](p(x, n, q)) where p(x,n,q) = Product_{j=1..n} (x + q^j) + Product_{j=1..n} (x*q^j + 1), p(x, 0, q) = 1, and q = 3.

Extensions

Edited by G. C. Greubel, Apr 26 2021