cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173076 Triangle T(n, k, q) = binomial(n, k) - 1 + q^(floor(n/2))*binomial(n-2, k-1) with T(n, 0, q) = T(n, n, q) = 1 and q = 2, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 7, 13, 7, 1, 1, 8, 21, 21, 8, 1, 1, 13, 46, 67, 46, 13, 1, 1, 14, 60, 114, 114, 60, 14, 1, 1, 23, 123, 295, 389, 295, 123, 23, 1, 1, 24, 147, 419, 685, 685, 419, 147, 24, 1, 1, 41, 300, 1015, 2001, 2491, 2001, 1015, 300, 41, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 09 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,  1;
  1,  3,   1;
  1,  4,   4,    1;
  1,  7,  13,    7,    1;
  1,  8,  21,   21,    8,    1;
  1, 13,  46,   67,   46,   13,    1;
  1, 14,  60,  114,  114,   60,   14,    1;
  1, 23, 123,  295,  389,  295,  123,   23,   1;
  1, 24, 147,  419,  685,  685,  419,  147,  24,  1;
  1, 41, 300, 1015, 2001, 2491, 2001, 1015, 300, 41, 1;
		

Crossrefs

Cf. A132044 (q=0), A173075 (q=1), this sequence (q=2), A173077 (q=3).

Programs

  • Magma
    T:= func< n,k,q | k eq 0 or k eq n select 1 else Binomial(n,k) + q^(Floor(n/2))*Binomial(n-2,k-1) -1 >;
    [T(n,k,2): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 09 2021
    
  • Mathematica
    T[n_, k_, q_]:= If[k==0 || k==n, 1, Binomial[n, k] - 1 + q^(Floor[n/2])*Binomial[n-2, k-1]];
    Table[T[n, k, 2], {n,0,10}, {k,0,n}]//Flatten
  • Sage
    def T(n,k,q): return 1 if (k==0 or k==n) else binomial(n,k) + q^(n//2)*binomial(n-2,k-1) -1
    flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)])

Formula

T(n, k, q) = binomial(n, k) - 1 + q^floor(n/2)*binomial(n-2, k-1) with T(n, 0, q) = T(n, n, q) = 1 and q = 2.

Extensions

Edited by G. C. Greubel, Jul 09 2021