A173076 Triangle T(n, k, q) = binomial(n, k) - 1 + q^(floor(n/2))*binomial(n-2, k-1) with T(n, 0, q) = T(n, n, q) = 1 and q = 2, read by rows.
1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 7, 13, 7, 1, 1, 8, 21, 21, 8, 1, 1, 13, 46, 67, 46, 13, 1, 1, 14, 60, 114, 114, 60, 14, 1, 1, 23, 123, 295, 389, 295, 123, 23, 1, 1, 24, 147, 419, 685, 685, 419, 147, 24, 1, 1, 41, 300, 1015, 2001, 2491, 2001, 1015, 300, 41, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 3, 1; 1, 4, 4, 1; 1, 7, 13, 7, 1; 1, 8, 21, 21, 8, 1; 1, 13, 46, 67, 46, 13, 1; 1, 14, 60, 114, 114, 60, 14, 1; 1, 23, 123, 295, 389, 295, 123, 23, 1; 1, 24, 147, 419, 685, 685, 419, 147, 24, 1; 1, 41, 300, 1015, 2001, 2491, 2001, 1015, 300, 41, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
T:= func< n,k,q | k eq 0 or k eq n select 1 else Binomial(n,k) + q^(Floor(n/2))*Binomial(n-2,k-1) -1 >; [T(n,k,2): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 09 2021
-
Mathematica
T[n_, k_, q_]:= If[k==0 || k==n, 1, Binomial[n, k] - 1 + q^(Floor[n/2])*Binomial[n-2, k-1]]; Table[T[n, k, 2], {n,0,10}, {k,0,n}]//Flatten
-
Sage
def T(n,k,q): return 1 if (k==0 or k==n) else binomial(n,k) + q^(n//2)*binomial(n-2,k-1) -1 flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)])
Formula
T(n, k, q) = binomial(n, k) - 1 + q^floor(n/2)*binomial(n-2, k-1) with T(n, 0, q) = T(n, n, q) = 1 and q = 2.
Extensions
Edited by G. C. Greubel, Jul 09 2021