A173085 Numbers k such that k, k^2 - 5, and k^2 + 5 are semiprime.
26, 62, 86, 118, 134, 566, 706, 982, 1198, 1322, 1346, 1678, 1706, 1822, 2386, 2402, 2498, 2654, 2966, 3086, 3142, 3158, 3326, 3662, 4222, 4874, 5158, 5354, 5774, 6602, 6638, 6746, 6998, 7142, 7586, 7646, 7834, 8006, 8482, 8486, 8846, 9134, 9406, 10558
Offset: 1
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[n_]:=Last/@FactorInteger[n]=={1,1}||Last/@FactorInteger[n]=={2}; lst={};Do[If[f[n], a=n^2-5;b=n^2+5;If[f[a]&&f[b],AppendTo[lst,n]]],{n,9!}];lst Select[Range[12000],PrimeOmega[#]==PrimeOmega[#^2-5] == PrimeOmega[ #^2+5] == 2&] (* Harvey P. Dale, Aug 29 2021 *)
-
PARI
issemi(n)=bigomega(n)==2 is(n)=if(n%2, isprime((n^2-5)\2) && isprime((n^2+5)\2) && issemi(n), isprime(n/2) && issemi(n^2-5) && issemi(n^2+5)) \\ Charles R Greathouse IV, Sep 14 2015
Formula
a(n) >> n log n. - Charles R Greathouse IV, Sep 14 2015
Extensions
Edited by Charles R Greathouse IV, Apr 06 2010
Comments