cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173116 a(n) = sinh(2*arcsinh(n))^2 = 4*n^2*(n^2 + 1).

Original entry on oeis.org

0, 8, 80, 360, 1088, 2600, 5328, 9800, 16640, 26568, 40400, 59048, 83520, 114920, 154448, 203400, 263168, 335240, 421200, 522728, 641600, 779688, 938960, 1121480, 1329408, 1565000, 1830608, 2128680, 2461760, 2832488, 3243600
Offset: 0

Views

Author

Artur Jasinski, Feb 10 2010

Keywords

Examples

			G.f. = 8*x + 80*x^2 + 360*x^3 + 1088*x^4 + 2600*x^5 + 5328*x^6 + 9800*x^7 + ... - _Michael Somos_, Jul 05 2018
		

Crossrefs

Programs

  • Magma
    [4*n^2*(n^2+1): n in [0..40]]; // Vincenzo Librandi, Jun 15 2011
    
  • Mathematica
    Table[4*n^2*(n^2 + 1), {n, 0, 30}] (* OR *)
    Table[Round[N[Sinh[2 ArcSinh[n]]^2, 100]], {n, 0, 30}]
    a[ n_] := TrigExpand @ Sinh[ 2 ArcSinh @ n]^2; (* Michael Somos, Jul 05 2018 *)
  • PARI
    a(n)=4*n^2*(n^2+1) \\ Charles R Greathouse IV, Apr 17 2012
    
  • PARI
    a(n)=8*binomial(n^2+1,2) \\ Charles R Greathouse IV, Apr 17 2012

Formula

a(n) = 4*A071253(n) = 8*A037270(n).
G.f.: 8*x*(1 + 5*x + 5*x^2 + x^3)/(1 - x)^5. - Colin Barker, Jan 08 2012
E.g.f.: 4*x*(2 + 8*x + 6*x^2 + x^3)*exp(x). - Michael Somos, Jul 05 2018
a(n) = a(-n) = (2*n)^2 + (2*n^2)^2 = (2*n^2 + 1)^2 - 1. - Michael Somos, Jul 05 2018
From Amiram Eldar, Oct 25 2024: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/24 + (1-Pi*coth(Pi))/8.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/48 + (Pi*cosech(Pi)-1)/8. (End)

Extensions

Name corrected by Jianing Song, Nov 23 2018