cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173121 a(n) = sinh(2*arccosh(n))^2 = 4*n^2*(n^2 - 1).

Original entry on oeis.org

0, 0, 48, 288, 960, 2400, 5040, 9408, 16128, 25920, 39600, 58080, 82368, 113568, 152880, 201600, 261120, 332928, 418608, 519840, 638400, 776160, 935088, 1117248, 1324800, 1560000, 1825200, 2122848, 2455488, 2825760, 3236400, 3690240
Offset: 0

Views

Author

Artur Jasinski, Feb 10 2010

Keywords

Crossrefs

Programs

  • Magma
    [4*n^2*(n^2-1): n in [0..40]]; // Vincenzo Librandi, Jun 15 2011
    
  • Mathematica
    Table[4 n^2*(n^2 - 1), {n, 0, 30}] (* or *) Table[Round[N[Sinh[2 ArcCosh[n]]^2, 100]], {n, 0, 50}]
    LinearRecurrence[{5,-10,10,-5,1},{0,0,48,288,960},40] (* Harvey P. Dale, Jul 22 2015 *)
  • PARI
    a(n)=4*n^2*(n^2-1) \\ Charles R Greathouse IV, Jul 01 2013

Formula

a(n) = 48*A002415(n) = 4*A047928(n).
G.f.: 48*x^2*(1+x)/(1-x)^5. - Colin Barker, Mar 22 2012
From Amiram Eldar, Jul 26 2022: (Start)
Sum_{n>=2} 1/a(n) = (21 - 2*Pi^2)/48.
Sum_{n>=2} (-1)^n/a(n) = (Pi^2 - 9)/48. (End)