cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173122 Irregular triangle T(n) = coefficients of Sum_{k=0..n} t(n,k,q) for powers of q, where t(n,k,q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with t(n,0,q) = t(n,n,q) = 1, read by rows.

Original entry on oeis.org

1, 2, 4, 1, 8, 2, 16, 4, 32, 8, 2, 64, 16, 4, 128, 32, 8, 2, 256, 64, 16, 4, 512, 128, 32, 8, 2, 1024, 256, 64, 16, 4, 2048, 512, 128, 32, 8, 2, 4096, 1024, 256, 64, 16, 4, 8192, 2048, 512, 128, 32, 8, 16384, 4096, 1024, 256, 64, 16, 32768, 8192, 2048, 512, 128, 32, 65536, 16384, 4096, 1024, 256, 64
Offset: 0

Views

Author

Roger L. Bagula, Feb 10 2010

Keywords

Examples

			Irregular triangle begins as:
     1;
     2;
     4,   1;
     8,   2;
    16,   4;
    32,   8,  2;
    64,  16,  4;
   128,  32,  8,  2;
   256,  64, 16,  4;
   512, 128, 32,  8, 2;
  1024, 256, 64, 16, 4;
		

Crossrefs

Programs

  • Mathematica
    t[n_, k_, q_]:= If[k==0 || k==n, 1, q*Boole[n==2] + Sum[q^j*Binomial[n-2*j, k-j] *Boole[n>2*j], {j, 0, 5}]];
    T[n_]:= CoefficientList[Series[Sum[t[n,k,q], {k,0,n}], {q,0,n}], q];
    Table[T[n], {n, 0, 12}]//Flatten (* modified by G. C. Greubel, Apr 29 2021 *)
  • Sage
    @CachedFunction
    def t(n, k, x): return 1 if (k==0 or k==n) else x*bool(n==2) + sum( x^j*binomial(n-2*j, k-j)*bool(n>2*j) for j in (0..5) )
    def s(n,x): return sum( t(n,k,x) for k in (0..n) )
    flatten([taylor(s(n,x), x, 0, n).list() for n in (0..12)]) # G. C. Greubel, Apr 29 2021

Formula

T(n) = coefficients of Sum_{k=0..n} t(n,k,q) for powers of q, where t(n,k,q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with t(n,0,q) = t(n,n,q) = 1.

Extensions

More terms and edited by G. C. Greubel, Apr 29 2021