A173143 Partial sums of the squarefree numbers, A005117.
1, 3, 6, 11, 17, 24, 34, 45, 58, 72, 87, 104, 123, 144, 166, 189, 215, 244, 274, 305, 338, 372, 407, 444, 482, 521, 562, 604, 647, 693, 740, 791, 844, 899, 956, 1014, 1073, 1134, 1196, 1261, 1327, 1394, 1463, 1533, 1604, 1677, 1751, 1828, 1906, 1985, 2067, 2150
Offset: 1
Examples
The first squarefree numbers are: 1, 2, 3, 5, 6, 7, 10, ... So, the first partial sums are: 1, 3, 6, 11, 17, 24, 34, ...
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Accumulate[Select[Range[100],SquareFreeQ]] (* Harvey P. Dale, Jan 09 2016 *)
-
PARI
lista(nn)=s = 0; for (n=1, nn, if (issquarefree(n), s += n; print1(s, ", "););); \\ Michel Marcus, Oct 01 2015
-
PARI
helper(n,k)=my(t=(n+1)\k); binomial(t,2)*k + (n+1 - t*k)*t a(n)=my(s); forsquarefree(k=1,sqrtint(n), s+=moebius(k)*helper(n,k[1]^2)); s \\ Charles R Greathouse IV, Feb 05 2018
Formula
a(n) ~ (Pi^2/12) * n^2. - Amiram Eldar, Oct 21 2020