cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173154 a(n) = n^3/6 + 3*n^2/4 + 7*n/3 + 7/8 + (-1)^n/8.

Original entry on oeis.org

1, 4, 10, 19, 33, 52, 78, 111, 153, 204, 266, 339, 425, 524, 638, 767, 913, 1076, 1258, 1459, 1681, 1924, 2190, 2479, 2793, 3132, 3498, 3891, 4313, 4764, 5246, 5759, 6305, 6884, 7498, 8147, 8833, 9556, 10318, 11119, 11961, 12844, 13770, 14739, 15753, 16812, 17918, 19071, 20273, 21524
Offset: 0

Views

Author

Paul Curtz, Feb 11 2010

Keywords

Comments

Generated by reading the table shown in A172002 down the diagonal starting at 1.
The inverse binomial transform yields 1, 3, 3, 0, 2, -4, 8, -16, 32, -64, 128, -256, 512, -1024, ... with a pattern of powers of 2.

Programs

  • Magma
    [n^3/6 + 3*n^2/4 + 7*n/3 + 7/8 + (-1)^n/8: n in [0..50]]; // Vincenzo Librandi, Aug 05 2011
  • Mathematica
    Table[n^3/6+(3n^2)/4+(7n)/3+7/8+(-1)^n/8,{n,0,50}] (* or *) LinearRecurrence[{3,-2,-2,3,-1},{1,4,10,19,33},50] (* Harvey P. Dale, Jan 04 2012 *)

Formula

G.f.: ( 1 + x - x^3 + x^4 ) / ( (1+x)*(x-1)^4 ).
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5).
a(n+4) - a(n) = 4*A152948(n+5) = 4*A089071(n+5).
First differences: a(n+1) - a(n) = A061925(n+2).
Second differences: a(n+2) - 2*a(n+1) + a(n) = n + 5/2 + (-1)^n/2 = 3, 3, 5, 5, 7, 7, 9, 9, ... , duplicated A144396.