cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173178 Numbers k such that 2*k+3 is a prime of the form 3*A024893(m) + 2.

Original entry on oeis.org

1, 4, 7, 10, 13, 19, 22, 25, 28, 34, 40, 43, 49, 52, 55, 64, 67, 73, 82, 85, 88, 94, 97, 112, 115, 118, 124, 127, 130, 133, 139, 145, 154, 157, 172, 175, 178, 190, 193, 199, 208, 214, 220, 223, 229, 232, 238, 244, 250, 253, 259, 277, 280, 283, 292, 295, 298, 307, 319
Offset: 1

Views

Author

Eric Desbiaux, Feb 11 2010

Keywords

Comments

With the Bachet-Bézout theorem implicating Gauss Lemma and the Fundamental Theorem of Arithmetic,
for k > 1, k = 2*a + 3*b (a and b integers)
first type
A001477 = (2*A080425) + (3*A008611)
A000040 = (2*A039701) + (3*A157966)
A024893 Numbers k such that 3*k + 2 is prime
A034936 Numbers k such that 3*k + 4 is prime
OR second type
A001477 = (2*A028242) + (3*A059841)
A000040 = (2*A067076) + (3*1)
A067076 Numbers k such that 2*k + 3 is prime
k a b OR a b
-- - - - -
0 0 0 0 0
1 - - - -
2 1 0 1 0
3 0 1 0 1
4 2 0 2 0
5 1 1 1 1
6 0 2 3 0
7 2 1 2 1
8 1 2 4 0
9 0 3 3 1
10 2 2 5 0
11 1 3 4 1
12 0 4 6 0
13 2 3 5 1
14 1 4 7 0
15 0 5 6 1
...
2* 1 + 3 OR 3* 1 + 2 = 5;
2* 4 + 3 OR 3* 3 + 2 = 11;
2* 7 + 3 OR 3* 5 + 2 = 17;
2*10 + 3 OR 3* 7 + 2 = 23;
2*13 + 3 OR 3* 9 + 2 = 29;
2*19 + 3 OR 3*13 + 2 = 41;
2*22 + 3 OR 3*15 + 2 = 47;
2*25 + 3 OR 3*17 + 2 = 53;
2*28 + 3 OR 3*19 + 2 = 59.
A024893 Numbers k such that 3k+2 is prime.
A007528 Primes of the form 6k-1.
A024898 Positive integers k such that 6k-1 is prime.
1, 4, 7, 10, 13, 19, ... = (3*(4*A024898 - A024893) - 7)/2 = (A112774 - 3*A024893 - 5)/2 = A003627 - (3*A024893 - 5)/2.

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 320], PrimeQ[(p = 2*# + 3)] && Mod[p, 3] == 2 &] (* Amiram Eldar, Jul 30 2024 *)

Formula

a(n) = 3*A059325(n) + 1. - Amiram Eldar, Jul 30 2024

Extensions

Data corrected and extended by Amiram Eldar, Jul 30 2024