cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A173265 T(0,k) = 1 and T(n,k) = [x^k] (1 - x^(n + 1))/(1 - x)^(n + 1) for n >= 1, square array read by descending antidiagonals(n >= 0, k >= 0).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 6, 4, 1, 1, 2, 9, 10, 5, 1, 1, 2, 12, 20, 15, 6, 1, 1, 2, 15, 34, 35, 21, 7, 1, 1, 2, 18, 52, 70, 56, 28, 8, 1, 1, 2, 21, 74, 125, 126, 84, 36, 9, 1, 1, 2, 24, 100, 205, 252, 210, 120, 45, 10, 1, 1, 2, 27, 130, 315, 461, 462, 330, 165, 55, 11, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 14 2010

Keywords

Examples

			Square array begins:
  n\k | 0  1  2   3   4    5    6    7     8 ...
  ----------------------------------------------
    0 | 1  1  1   1   1    1    1    1     1 ...
    1 | 1  2  2   2   2    2    2    2     2 ...
    2 | 1  3  6   9  12   15   18   21    24 ...
    3 | 1  4 10  20  34   52   74  100   130 ...
    4 | 1  5 15  35  70  125  205  315   460 ...
    5 | 1  6 21  56 126  252  461  786  1266 ...
    6 | 1  7 28  84 210  462  924 1715  2996 ...
    7 | 1  8 36 120 330  792 1716 3432  6434 ...
    8 | 1  9 45 165 495 1287 3003 6435 12870 ...
    ...
		

Crossrefs

Programs

  • Mathematica
    p[x_, n_] = If[n == 0, 1/(1 - x), (Sum[x^i, {i, 0, n}])/(1 - x)^n];
    a = Table[Table[SeriesCoefficient[Series[p[x, n], {x, 0, 50}], m], {m, 0, 20}], {n, 0, 20}];
    Flatten[Table[Table[a[[m, n - m + 1]], {m, 1, n}], {n, 1, 10}]]
  • Maxima
    (kk : 50, nn : 15)$
    gf(n) := taylor(if n = 0 then 1/(1 - x) else (1 - x^(n + 1))/(1 - x)^(n + 1), x, 0, kk)$
    T(n, k) := ratcoef(gf(n), x, k)$
    create_list(T(k, n - k), n, 0, nn, k, 0, n);
    /* Franck Maminirina Ramaharo, Jan 18 2019 */

Extensions

Edited by Franck Maminirina Ramaharo, Jan 23 2019

A173264 T(0,k) = 1 and T(n,k) = [x^k] ((x - 2)*x^n + 1)/((x - 1)*(x + 1)^n) for n >= 1, square array read by descending antidiagonals (n >= 0, k >= 0).

Original entry on oeis.org

1, 1, -1, 1, 2, -1, 1, -2, 1, -1, 1, 2, 0, 2, -1, 1, -2, -1, -4, 3, -1, 1, 2, 2, 8, -7, 4, -1, 1, -2, -3, -14, 13, -11, 5, -1, 1, 2, 4, 22, -20, 24, -16, 6, -1, 1, -2, -5, -32, 27, -46, 40, -22, 7, -1, 1, 2, 6, 44, -33, 82, -86, 62, -29, 8, -1, 1, -2, -7, -58, 37, -139, 166, -148, 91, -37, 9, -1
Offset: 0

Views

Author

Roger L. Bagula, Feb 14 2010

Keywords

Examples

			Square array begins:
  n\k |  0   1   2   3    4   5     6    7     8 ...
  --------------------------------------------------
    0 |  1   1   1   1    1   1     1    1     1 ...
    1 | -1   2  -2   2   -2   2    -2    2    -2 ...
    2 | -1   1   0  -1    2  -3     4   -5     6 ...
    3 | -1   2  -4   8  -14  22   -32   44   -58 ...
    4 | -1   3  -7  13  -20  27   -33   37   -38 ...
    5 | -1   4 -11  24  -46  82  -139  226  -354 ...
    6 | -1   5 -16  40  -86 166  -294  485  -754 ...
    7 | -1   6 -22  62 -148 314  -610 1108 -1910 ...
    8 | -1   7 -29  91 -239 553 -1163 2269 -4164 ...
    ...
		

Crossrefs

Programs

  • Mathematica
    p[x_, n_] = If[n == 0, 1/(1 - x), (x^n - Sum[x^i, {i, 0, n - 1}])/( 1 + x)^n];
    a = Table[Table[SeriesCoefficient[Series[p[x, n], {x, 0, 50}], m], {m, 0, 20}], {n, 0, 20}];
    Flatten[Table[Table[a[[m, n - m + 1]], {m, 1, n}], {n, 1, 10}]]
  • Maxima
    (kk : 50, nn : 15)$
    gf(n) := taylor(if n = 0 then 1/(1 - x) else ((x - 2)*x^n + 1)/((x - 1)*(x + 1)^n), x, 0, kk)$
    T(n, k) := ratcoef(gf(n), x, k)$
    create_list(T(k, n - k), n, 0, nn, k, 0, n);
    /* Franck Maminirina Ramaharo, Jan 23 2019 */

Extensions

Edited by Franck Maminirina Ramaharo, Jan 23 2019
Showing 1-2 of 2 results.