cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173300 a(n) is the denominator of the fraction f = x^n + y^n given that x + y = 1 and x^2 + y^2 = 2.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 8, 8, 16, 8, 32, 32, 64, 32, 128, 128, 256, 128, 512, 512, 1024, 512, 2048, 2048, 4096, 2048, 8192, 8192, 16384, 8192, 32768, 32768, 65536, 32768, 131072, 131072, 262144, 131072, 524288, 524288, 1048576, 524288, 2097152, 2097152, 4194304, 2097152
Offset: 1

Views

Author

J. Lowell, Feb 15 2010

Keywords

Comments

The denominators of the coefficients of the Taylor series representation of (1+x)/(1-2*x-11*x^2-6*x^3) around x=-1 lead to this sequence, see the Maple program. - Johannes W. Meijer, Aug 16 2010

Examples

			a(3) = 2 because x^3 + y^3 = 5/2.
		

Crossrefs

Cf. A173989 (2-adic valuations).

Programs

  • Maple
    nmax:=45: f:=n-> coeftayl((1+x)/(1-2*x-11*x^2-6*x^3), x=-1, n): a(1):=1: for n from 0 to nmax do a(n+2):= denom(f(n)) od: seq(a(n),n=1..nmax); # Johannes W. Meijer, Aug 16 2010
  • Mathematica
    Denominator[Map[First, NestList[{Last[#], Last[#] + First[#]/2} &, {1, 2}, 50]]] (* Paolo Xausa, Feb 01 2024, after Nick Hobson *)
  • PARI
    a(n) = denominator(2*polcoeff( lift( Mod((1+x)/2,x^2-3)^n ), 0)) \\ Max Alekseyev, Feb 23 2010
    
  • Python
    from fractions import Fraction
    def a173300_gen(a, b):
        while True:
            yield a.denominator
            b, a = b + Fraction(a, 2), b
    for n, a_n in zip(range(1, 47), a173300_gen(1, 2)):
        print(n, a_n)  # Nick Hobson, Jan 30 2024

Formula

a(n) = denominator of ((1+sqrt(3))/2)^n + ((1-sqrt(3))/2)^n. - Max Alekseyev, Feb 23 2010
Conjecture: a(n) = 4*a(n-4), for n >= 7. - Paolo Xausa, Feb 02 2024

Extensions

More terms from Max Alekseyev, Feb 23 2010