A173989 a(n) is the 2-adic valuation of A173300(n).
0, 0, 1, 1, 2, 1, 3, 3, 4, 3, 5, 5, 6, 5, 7, 7, 8, 7, 9, 9, 10, 9, 11, 11, 12, 11, 13, 13, 14, 13, 15, 15, 16, 15, 17, 17, 18, 17, 19, 19, 20, 19, 21, 21, 22, 21, 23, 23, 24, 23, 25, 25, 26, 25, 27, 27, 28, 27, 29, 29, 30, 29, 31, 31, 32, 31, 33, 33, 34, 33, 35, 35, 36, 35, 37, 37, 38, 37
Offset: 1
Links
- Hugo Pfoertner, Table of n, a(n) for n = 1..1000
Programs
-
Maple
From R. J. Mathar, Mar 20 2010: (Start) A173300 := proc(n) local x,y ; x := (1+sqrt(3))/2 ; y := (1-sqrt(3))/2 ; denom(expand(x^n+y^n)) ; end proc: A173989 := proc(n) log[2](A173300(n)) ; end proc: seq(A173989(n),n=3..100) ; (End)
-
Mathematica
Log2[Denominator[Map[First, NestList[{Last[#], Last[#] + First[#]/2} &, {1, 2}, 100]]]] (* Paolo Xausa, Feb 01 2024, after Nick Hobson in A173300 *)
-
PARI
\\ using Max Alekseyev's function in A173300 A173300(n) = denominator(2*polcoeff( lift( Mod((1+x)/2, x^2-3)^n ), 0)) for(k=1,74,print1(logint(A173300(k),2),", ")) \\ Hugo Pfoertner, Oct 10 2018
Formula
a(n) = log(A173300(n))/log(2).
Apparently a(n) = A102302(n) for n >= 7. - Hugo Pfoertner, Oct 10 2018
Conjectures from Colin Barker, Oct 10 2018: (Start)
G.f.: x^3*(1 + x^2 - x^3 + x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 7.
(End)
Apparently a(n) = A116921(n) for n>=3. - R. J. Mathar, Aug 29 2025
Extensions
More terms from R. J. Mathar and Max Alekseyev, Mar 20 2010
Comments