cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A173929 Primes in A173299.

Original entry on oeis.org

2, 5, 7, 19, 13, 71, 97, 181, 3691, 2521, 191861, 489061, 6811741, 138907099, 708158977, 1321442641, 26947261171, 18405321661, 381765135195632792959100810331957408101589361
Offset: 1

Views

Author

Klaus Brockhaus, Mar 02 2010

Keywords

Comments

a(20) has 84 digits. Most terms of A173299 are nonprime.

Crossrefs

Cf. A173299.

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(2*x^2-2*x-1); S:=[ r^n+(1-r)^n: n in [1..300] ]; [ k: j in [1..#S] | IsPrime(k) where k is Numerator(RationalField()!S[j])];

A173300 a(n) is the denominator of the fraction f = x^n + y^n given that x + y = 1 and x^2 + y^2 = 2.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 8, 8, 16, 8, 32, 32, 64, 32, 128, 128, 256, 128, 512, 512, 1024, 512, 2048, 2048, 4096, 2048, 8192, 8192, 16384, 8192, 32768, 32768, 65536, 32768, 131072, 131072, 262144, 131072, 524288, 524288, 1048576, 524288, 2097152, 2097152, 4194304, 2097152
Offset: 1

Views

Author

J. Lowell, Feb 15 2010

Keywords

Comments

The denominators of the coefficients of the Taylor series representation of (1+x)/(1-2*x-11*x^2-6*x^3) around x=-1 lead to this sequence, see the Maple program. - Johannes W. Meijer, Aug 16 2010

Examples

			a(3) = 2 because x^3 + y^3 = 5/2.
		

Crossrefs

Cf. A173989 (2-adic valuations).

Programs

  • Maple
    nmax:=45: f:=n-> coeftayl((1+x)/(1-2*x-11*x^2-6*x^3), x=-1, n): a(1):=1: for n from 0 to nmax do a(n+2):= denom(f(n)) od: seq(a(n),n=1..nmax); # Johannes W. Meijer, Aug 16 2010
  • Mathematica
    Denominator[Map[First, NestList[{Last[#], Last[#] + First[#]/2} &, {1, 2}, 50]]] (* Paolo Xausa, Feb 01 2024, after Nick Hobson *)
  • PARI
    a(n) = denominator(2*polcoeff( lift( Mod((1+x)/2,x^2-3)^n ), 0)) \\ Max Alekseyev, Feb 23 2010
    
  • Python
    from fractions import Fraction
    def a173300_gen(a, b):
        while True:
            yield a.denominator
            b, a = b + Fraction(a, 2), b
    for n, a_n in zip(range(1, 47), a173300_gen(1, 2)):
        print(n, a_n)  # Nick Hobson, Jan 30 2024

Formula

a(n) = denominator of ((1+sqrt(3))/2)^n + ((1-sqrt(3))/2)^n. - Max Alekseyev, Feb 23 2010
Conjecture: a(n) = 4*a(n-4), for n >= 7. - Paolo Xausa, Feb 02 2024

Extensions

More terms from Max Alekseyev, Feb 23 2010

A305491 a(n) = numerator(r(n)) where r(n) = (((1/2)*(sqrt(3) + 1))^n - ((1/2)*(sqrt(3) - 1))^n * cos(Pi*n))/sqrt(3).

Original entry on oeis.org

0, 1, 1, 3, 2, 11, 15, 41, 7, 153, 209, 571, 195, 2131, 2911, 7953, 679, 29681, 40545, 110771, 37829, 413403, 564719, 1542841, 263445, 5757961, 7865521, 21489003, 7338631, 80198051, 109552575, 299303201, 12776743, 1117014753, 1525870529, 4168755811, 1423656585
Offset: 0

Views

Author

Peter Luschny, Jun 02 2018

Keywords

Comments

Let f(x, y) = ((y+1)^x - (y-1)^x * cos(Pi*x))/(y * 2^x). Then f(n, sqrt(3)) are the rational numbers a(n)/A060723(n) and f(n, sqrt(5)) the Fibonacci numbers A000045(n).
From Paul Curtz, Dec 05 2018: (Start)
The binomial inverse of the rational sequence r(n) starts 0, 1, -1, 3/2, -2, 11/4, -15/4, 41/8, -7, 153/16, -209/16, ... and is up to signs equal to r(n). The difference table starts:
0, 1, 1, 3/2, 2, 11/4, 15/4, 41/8, ...
1, 0, 1/2, 1/2, 3/4, 1, 11/8, 15/8, ...
-1, 1/2, 0, 1/4, 1/4, 3/8, 1/2, 11/16, ...
3/2, -1/2, 1/4, 0, 1/8, 1/8, 3/16, 1/4, ...
...
Let s(n) = 2*r(n+1) - r(n) then s(n) = 1, 2, 5/2, 7/2, 19/4, 13/2, ... = A173299(n)/A173300(n) for n >= 1. (End)

Crossrefs

Cf. A060723 (denominators), A060755, A000045, A305492.

Programs

  • Mathematica
    Table[Numerator[Simplify[((1/2 (Sqrt[3] + 1))^x - (1/2 (Sqrt[3] - 1))^x Cos[Pi  x])/Sqrt[3]]], {x, 0, 36}]

Formula

A recurrence for r(n) is given in A060723.
Showing 1-3 of 3 results.