Original entry on oeis.org
1, 2, 3, 6, 9, 14, 21, 32, 45, 65, 90, 125, 170, 231, 307, 411, 539, 707, 917, 1188, 1522, 1950, 2475, 3137, 3949, 4962, 6195, 7725, 9579, 11856, 14610, 17971, 22012, 26919, 32798, 39892, 48367, 58541, 70647, 85123, 102291, 122724, 146891, 175545, 209322
Offset: 0
a(7) = 32 = (1 + 5 + 11 + 15), = p(0) + p(4) + p(6) + p(7).
-
a(n) = sum(k=0, logint(n+1, 2), numbpart(n + 1 - 2^k)) \\ Andrew Howroyd, Aug 10 2018
A173304
Triangle generated from the array in A173302 (partition numbers starting new rows at n = 1, 3, 7, 15, ...).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 3, 2, 4, 4, 3, 4, 6, 4, 7, 8, 6, 1, 8, 11, 9, 2, 12, 15, 12, 3, 14, 20, 17, 5, 21, 26, 23, 7, 24, 35, 31, 11, 34, 45, 41, 15, 41, 58, 55, 21, 1, 55, 75, 71, 29, 1, 66, 96, 93, 40, 2, 88, 121, 120, 53, 3, 105, 154, 154, 72, 5, 137, 193, 196, 94, 7
Offset: 0
The finite difference array starts:
1, 1, 1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 21, 24, ...; = A002865 (a variant)
1, 1, 2, 3, 4, 6, 8, 11, 15, 20, 26, 35, ...; = A027336
1, 1, 2, 3, 4, 6, 9, 12, 17, 23, 31, ...; = A017338
1, 1, 2, 3, 5, 7, 11, ...; = A027342
...
Last, columns of the array become rows of triangle A173304:
1;
1;
1, 1;
2, 2, 1;
2, 3, 2;
4, 4, 3;
4, 6, 4, 1;
7, 8, 6, 1;
8, 11, 9, 2;
12, 15, 12, 3;
14, 20, 17, 5;
21, 26, 23, 7;
24, 35, 31, 11;
34, 45, 41, 15;
41, 58, 55, 21, 1;
55, 75, 71, 29, 1;
66, 96, 93, 40, 2;
88, 121, 120, 53, 3;
105, 154, 154, 72, 5;
137, 193, 196, 94, 7;
...
Original entry on oeis.org
1, 1, 3, 15, 176, 6842, 1505499, 3913864295, 338854264248680, 4216199393504640098482, 59475094770587936660132803278445, 17618334934720173062514849536736413843694654543
Offset: 0
- Refer to tables of the partition numbers.
-
Table[PartitionsP[2^n - 1], {n, 0 ,10}] (* Amiram Eldar, Feb 26 2020 *)
Showing 1-3 of 3 results.
Comments