cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173313 Partial sums of A000273.

Original entry on oeis.org

1, 2, 5, 21, 239, 9847, 1550791, 883584231, 1794242777079, 13029751067176631, 341273461704039756983, 32523250658517590150954423, 11366777954076059092024044958647, 14669097059490883945096188099361179575, 70315671284332059012269451652168003452397495
Offset: 0

Views

Author

Jonathan Vos Post, Feb 16 2010

Keywords

Comments

Partial sums of number of directed graphs (or digraphs) with n nodes. The subsequence of primes in this partial sum begins 2, 5, 239, then no more through a(20).
a(n) is the number of isolated points over all directed graphs with (n + 1) nodes. - Geoffrey Critzer, Oct 08 2012

Examples

			a(12) = 1 + 1 + 3 + 16 + 218 + 9608 + 1540944 + 882033440 + 1793359192848 + 13027956824399552 + 341260431952972580352 + 32522909385055886111197440 + 11366745430825400574433894004224.
		

Crossrefs

Cf. A000273.

Programs

  • Maple
    b:= proc(n, i, l) `if`(n=0 or i=1, 1/n!*2^((p-> add(p[j]-1+add(
          igcd(p[k], p[j]), k=1..j-1)*2, j=1..nops(p)))([l[], 1$n])),
          add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i))
        end:
    a:= proc(n) option remember; b(n$2, [])+`if`(n=0, 0, a(n-1)) end:
    seq(a(n), n=0..16);  # Alois P. Heinz, Sep 04 2019
  • Mathematica
    nn=20;d=Sum[NumberOfDirectedGraphs[n]x^n,{n,0,nn}];CoefficientList[Series[d/(1-x),{x,0,nn}],x]

Formula

a(n) = Sum_{i=0..n} A000273(i).
O.g.f.: A(x)/(1-x) where A(x) is the o.g.f. for A000273. - Geoffrey Critzer, Oct 08 2012