cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173318 Partial sums of A005811.

Original entry on oeis.org

0, 1, 3, 4, 6, 9, 11, 12, 14, 17, 21, 24, 26, 29, 31, 32, 34, 37, 41, 44, 48, 53, 57, 60, 62, 65, 69, 72, 74, 77, 79, 80, 82, 85, 89, 92, 96, 101, 105, 108, 112, 117, 123, 128, 132, 137, 141, 144, 146, 149, 153, 156, 160, 165, 169, 172, 174, 177, 181, 184, 186, 189
Offset: 0

Views

Author

Jonathan Vos Post, Feb 16 2010

Keywords

Comments

Partial sums of number of runs in binary expansion of n (n>0). Partial sums of number of 1's in Gray code for n. The subsequence of squares in this partial sum begins 0, 1, 4, 9, 144, 169, 256, 289, 324 (since we also have 32 and 128 I wonder about why so many powers). The subsequence of primes in this partial sum begins: 3, 11, 17, 29, 31, 37, 41, 53, 79, 89, 101, 137, 149, 181, 191, 197, 229, 271.
Note: A227744 now gives the squares, which occur at positions given by A227743. - Antti Karttunen, Jul 27 2013

Examples

			1 has 1 run in its binary representation "1".
2 has 2 runs in its binary representation "10".
3 has 1 run in its binary representation "11".
4 has 2 runs in its binary representation "100".
5 has 3 runs in its binary representation "101".
Thus a(1) = 1, a(2) = 1+2 = 3, a(3) = 1+2+1 = 4, a(4) = 1+2+1+2 = 6, a(5) = 1+2+1+2+3 = 9.
		

Crossrefs

Cf. also A227737, A227741, A227742.
Cf. A227744 (squares occurring), A227743 (indices of squares).

Programs

  • Mathematica
    Accumulate[Join[{0},Table[Length[Split[IntegerDigits[n,2]]],{n,110}]]] (* Harvey P. Dale, Jul 29 2013 *)
  • PARI
    a(n) = my(v=binary(n+1),d=0,e=4); for(i=1,#v, if(v[i], v[i]=#v-i+d;d+=e;e=0, e=4)); fromdigits(v,2)>>1; \\ Kevin Ryde, Aug 27 2021

Formula

a(n) = sum(i=0..n) A005811(i) = sum(i=0..n) (A037834(i)+1) = sum(i=0..n) (A069010(i) + A033264(i)).
a(A000225(n)) = A001787(n) = A000788(A000225(n)). - Antti Karttunen, Jul 27 2013 & Aug 09 2013
a(2n) = 2*a(n) + n - 2*(ceiling(A005811(n)/2) - (n mod 2)), a(2n+1) = 2*a(n) + n + 1. - Ralf Stephan, Aug 11 2013