cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173334 Numbers k such that tau(phi(k)) = phi(sum-of-prime-divisors(k)).

Original entry on oeis.org

2, 3, 15, 18, 24, 28, 30, 33, 39, 50, 52, 55, 80, 132, 133, 152, 169, 186, 187, 190, 195, 207, 215, 217, 222, 230, 238, 247, 261, 266, 305, 319, 333, 340, 352, 369, 371, 414, 481, 484, 494, 496, 497, 506, 516, 522, 559, 574, 580, 611, 644, 646, 660, 671, 689
Offset: 1

Views

Author

Michel Lagneau, Feb 16 2010

Keywords

Comments

Numbers k such that A000005(A000010(k)) = A000010(A008472(k)).

Examples

			For n=15, tau(phi(15)) = tau(8)=4 equals phi(A008472(15))=phi(8) = 4, which adds 15 to the sequence.
For n=18, tau(phi(18)) = tau(6) =4 equals phi(A008472(18)) = phi(5) = 4, which adds 18 to the sequence.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.

Crossrefs

Programs

  • Magma
    [m:m in [2..700]|#Divisors(EulerPhi(m)) eq EulerPhi(&+PrimeDivisors(m))]; // Marius A. Burtea, Jul 10 2019
    
  • Maple
    with(numtheory): for n from 1 to 1800 do : t1:= ifactors(n)[2] : t2 :=sum(t1[i][1], i=1..nops(t1)):if tau(phi(n)) = phi(t2) then print (n): else fi : od :
  • Mathematica
    Select[Range[2, 700], DivisorSigma[0, EulerPhi[#]] == EulerPhi[Total[FactorInteger[#][[All, 1]]]] &]
    (* Jean-François Alcover, May 19 2011 *)
  • PARI
    isok(n) = numdiv(eulerphi(n)) == eulerphi(vecsum(factor(n)[, 1])); \\ Michel Marcus, Jul 10 2019

Formula

{n : A062821(n)= phi(A008472(n))}.

Extensions

Removed sopf acronym. Updated references and links - R. J. Mathar, Mar 10 2010