A173344 a(n+4) = a(n+3) - 2*a(n+2) - a(n+1) - a(n), starting with (0, 1, 0, -2).
0, 1, 0, -2, -3, 0, 8, 13, 0, -34, -55, 0, 144, 233, 0, -610, -987, 0, 2584, 4181, 0, -10946, -17711, 0, 46368, 75025, 0, -196418, -317811, 0, 832040, 1346269, 0, -3524578, -5702887, 0, 14930352, 24157817, 0, -63245986, -102334155, 0
Offset: 0
Links
- C. Dement, Online Floretion Multiplier [broken link]
- R. Munafo, Sequences Related to Floretions
- Index entries for linear recurrences with constant coefficients, signature (1,-2,-1,-1).
Programs
-
Mathematica
CoefficientList[Series[(x-x^2)/(1-x+2 x^2+x^3+x^4),{x,0,50}],x] (* Harvey P. Dale, Apr 01 2011 *)
-
PARI
concat(0, Vec((x-x^2)/(x^4+x^3+2*x^2-x+1) + O(x^50))) \\ Michel Marcus, Oct 29 2022
Formula
G.f.: x*(1-x)/(x^4+x^3+2*x^2-x+1).
Extensions
Name edited by Michel Marcus, Oct 29 2022
Comments