A173384 a(n) = 2^(2*n - HammingWeight(n)) * [x^n] ((x-1)^(-1) + (1-x)^(-3/2)).
0, 1, 7, 19, 187, 437, 1979, 4387, 76627, 165409, 707825, 1503829, 12706671, 26713417, 111868243, 233431331, 7770342787, 16124087129, 66765132341, 137948422657, 1138049013461, 2343380261227, 9636533415373, 19787656251221
Offset: 0
Keywords
Examples
From _Anthony Hernandez_, Feb 05 2020: (Start) Consider n = 4. The 4th odd number is 7, and 7!!/(7-1)!! = 35/16, and a(4-1) = a(3) = 35 - 16 = 19. Consider n = 7. The 7th odd number is 13, and 13!!/(13-1)!! = 3003/1024, and a(7-1) = a(6) = 3003 - 1024 = 1979. (End)
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Thomas Curtright and Gaurav Verma, Scattering Shadows, arXiv:2404.07745 [physics.class-ph], 2024, p. 9.
Programs
-
GAP
List([0..30], n-> (NumeratorRat((2*n+1)*Binomial(2*n, n)/(4^n)) - DenominatorRat(Binomial(2*n, n)/(4^n)))); # G. C. Greubel, Dec 09 2018
-
Magma
[Numerator((2*n+1)*Binomial(2*n, n)/(4^n)) - Denominator(Binomial(2*n, n)/(4^n)): n in [0..30]]; // G. C. Greubel, Dec 09 2018
-
Maple
A046161 := proc(n) binomial(2*n,n)/4^n ; denom(%) ; end proc: A173384 := proc(n) A001803(n)-A046161(n) ; end proc: # R. J. Mathar, Jul 06 2011
-
Mathematica
Table[Numerator[(2*n+1)*Binomial[2*n, n]/(4^n)] - Denominator[Binomial[2*n, n]/(4^n)], {n,0,30}] (* G. C. Greubel, Dec 09 2018 *) A173384[n_] := 2^(2*n - DigitCount[n, 2, 1]) Coefficient[Series[(x - 1)^(-1) + (1 - x)^(-3/2), {x, 0, n}], x, n] Table[A173384[n], {n, 0, 23}] (* Peter Luschny, Feb 17 2024 *)
-
PARI
for(n=0,30, print1(numerator((2*n+1)*binomial(2*n, n)/(4^n)) - denominator(binomial(2*n, n)/4^n), ", ")) \\ G. C. Greubel, Dec 09 2018
-
Sage
[(numerator((2*n+1)*binomial(2*n, n)/(4^n)) - denominator(binomial(2*n, n)/(4^n))) for n in range(30)] # G. C. Greubel, Dec 09 2018
Formula
Let r(n) = (-2)^n*Sum_{j=0..n-1} binomial(n,j)*Bernoulli(j+n+1, 1/2)/(j+n+1) then a(n) = numerator(r(n)). - Peter Luschny, Jun 20 2017
Extensions
New name using an expansion of Thomas Curtright by Peter Luschny, Feb 17 2024
Comments