A173426 a(n) is obtained by starting with 1, sequentially concatenating all decimal numbers up to n, and then, starting from n-1, sequentially concatenating all decimal numbers down to 1.
1, 121, 12321, 1234321, 123454321, 12345654321, 1234567654321, 123456787654321, 12345678987654321, 12345678910987654321, 123456789101110987654321, 1234567891011121110987654321, 12345678910111213121110987654321, 123456789101112131413121110987654321
Offset: 1
References
- D. Broadhurst, Primes from concatenation: results and heuristics, Number Theory List, Aug 01 2015 and later postings.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..150
- FactorDB, (121*10^(4*n-19) - 1002*10^(4*n-28) - 2*10^(2*n-9) + 879*10^10 + 121)/99^2.
- Shyam Sunder Gupta, Puzzle 794. Prime Generalized Palindromes, The Prime Puzzles and Problems Connection.
- S. S. Gupta, A new 17350 digit Symmetric Prime, NmbrThry List, July 20, 2015.
- Brady Haran and N. J. A. Sloane, The Most Wanted Prime Number, Numberphile series on YouTube, Dec 15 2021.
- Bertrand Teguia Tabuguia, Explicit formulas for concatenations of arithmetic progressions, arXiv:2201.07127 [math.CO], 2022.
- Index entries for sequences related to Most Wanted Primes video
Crossrefs
Programs
-
Maple
a:= n-> parse(cat($1..n, n-i$i=1..n-1)): seq(a(n), n=1..14); # Alois P. Heinz, Dec 01 2021
-
Mathematica
Table[FromDigits[Flatten[IntegerDigits/@Join[Range[n],Reverse[Range[ n-1]]]]],{n,15}] (* Harvey P. Dale, Sep 02 2015 *)
-
PARI
A173426(n)=eval(concat(vector(n*2-1,k,if(k
M. F. Hasler, Jul 29 2015 -
Python
def A173426(n): return int(''.join(str(d) for d in range(1,n+1))+''.join(str(d) for d in range(n-1,0,-1))) # Chai Wah Wu, Dec 01 2021
Formula
a(n) = concatenate(1,2,3,...,n-2,n-1,n,n-1,n-2,...,3,2,1).
Extensions
More terms from and minor edits by M. F. Hasler, Jul 29 2015
Comments