cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173438 Number of divisors d of number n such that d does not divide sigma(n).

Original entry on oeis.org

0, 1, 1, 2, 1, 0, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 4, 1, 4, 3, 2, 1, 2, 2, 2, 3, 0, 1, 4, 1, 5, 2, 2, 3, 8, 1, 2, 3, 4, 1, 4, 1, 3, 4, 2, 1, 7, 2, 5, 2, 4, 1, 4, 3, 4, 3, 2, 1, 6, 1, 2, 5, 6, 3, 4, 1, 4, 2, 6, 1, 10, 1, 2, 5, 3, 3, 4, 1, 8, 4, 2, 1, 6, 3, 2, 2, 5, 1, 6, 2, 3, 3, 2, 2, 6, 1, 5
Offset: 1

Views

Author

Jaroslav Krizek, Feb 18 2010

Keywords

Comments

a(n) = 0 for multiply-perfect numbers (A007691).

Examples

			For n = 12, a(12) = 3; sigma(12) = 28, divisors of 12: 1, 2, 3, 4, 6, 12; d does not divide sigma(n) for 3 divisors d: 3, 6 and 12.
		

Crossrefs

Programs

  • Maple
    A173438 := proc(n)
        local sd,a;
        sd := numtheory[sigma](n) ;
        a := 0 ;
        for d in numtheory[divisors](n) do
            if modp(sd,d) <> 0 then
                a := a+1 ;
            end if;
        end do:
        a;
    end proc: # R. J. Mathar, Oct 26 2015
  • Mathematica
    Table[DivisorSum[n, 1 &, ! Divisible[DivisorSigma[1, n], #] &], {n, 98}] (* Michael De Vlieger, Oct 08 2017 *)
  • PARI
    A173438(n) = (numdiv(n) - numdiv(gcd(sigma(n), n))); \\ (See PARI-code in A073802) - Antti Karttunen, Oct 08 2017

Formula

a(n) = A000005(n) - A073802(n).
a(n) = tau(n) - tau(gcd(n,sigma(n))). - Antti Karttunen, Oct 08 2017