A173438 Number of divisors d of number n such that d does not divide sigma(n).
0, 1, 1, 2, 1, 0, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 4, 1, 4, 3, 2, 1, 2, 2, 2, 3, 0, 1, 4, 1, 5, 2, 2, 3, 8, 1, 2, 3, 4, 1, 4, 1, 3, 4, 2, 1, 7, 2, 5, 2, 4, 1, 4, 3, 4, 3, 2, 1, 6, 1, 2, 5, 6, 3, 4, 1, 4, 2, 6, 1, 10, 1, 2, 5, 3, 3, 4, 1, 8, 4, 2, 1, 6, 3, 2, 2, 5, 1, 6, 2, 3, 3, 2, 2, 6, 1, 5
Offset: 1
Keywords
Examples
For n = 12, a(12) = 3; sigma(12) = 28, divisors of 12: 1, 2, 3, 4, 6, 12; d does not divide sigma(n) for 3 divisors d: 3, 6 and 12.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Programs
-
Maple
A173438 := proc(n) local sd,a; sd := numtheory[sigma](n) ; a := 0 ; for d in numtheory[divisors](n) do if modp(sd,d) <> 0 then a := a+1 ; end if; end do: a; end proc: # R. J. Mathar, Oct 26 2015
-
Mathematica
Table[DivisorSum[n, 1 &, ! Divisible[DivisorSigma[1, n], #] &], {n, 98}] (* Michael De Vlieger, Oct 08 2017 *)
-
PARI
A173438(n) = (numdiv(n) - numdiv(gcd(sigma(n), n))); \\ (See PARI-code in A073802) - Antti Karttunen, Oct 08 2017
Formula
a(n) = tau(n) - tau(gcd(n,sigma(n))). - Antti Karttunen, Oct 08 2017
Comments