cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173441 Number of divisors d of n such that sigma(d) divides n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 5, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 2, 1, 1
Offset: 1

Views

Author

Jaroslav Krizek, Feb 18 2010

Keywords

Comments

From Robert Israel, Oct 11 2017: (Start)
a(n) >= 1 since d=1 is always included.
a(n) = 1 if n is in A000961.
a(n) > 1 if n is in A097603. The first n not in A097603 such that a(n) > 1 is 117. (End)

Examples

			For n = 12, a(12) = 4; divisors of 12: 1, 2, 3, 4, 6, 12; corresponding sigma(d):1, 3, 4, 7, 12, 28; sigma(d) divides n for 4 divisors d: 1, 2, 3, 6.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) nops(select(t -> n mod numtheory:-sigma(t) = 0, numtheory:-divisors(n))) end proc:
    map(f, [$1..100]); # Robert Israel, Oct 11 2017
  • Mathematica
    a[n_] := Select[Divisors[n], Divisible[n, DivisorSigma[1, #]]&] // Length;
    Array[a, 100] (* Jean-François Alcover, Jun 05 2020 *)
  • PARI
    a(n) = sumdiv(n, d, !(n % sigma(d))); \\ Michel Marcus, Oct 11 2017

Formula

a(n) = A000005(n) - A173442(n). - A-number inserted by R. J. Mathar, Mar 06 2010
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{n>=1} 1/A009242(n) = 1.605582... . - Amiram Eldar, Mar 28 2024