A326697 a(n) is the sum of divisors d of n such that sigma(d) divides n.
1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 12, 1, 1, 1, 5, 1, 8, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 3, 1, 40, 1, 1, 1, 17, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 28
Offset: 1
Keywords
Examples
For n = 12, divisors d of 12: 1, 2, 3, 4, 6, 12; corresponding sigma(d): 1, 3, 4, 7, 12, 28; sigma(d) divides n for 4 divisors d: 1, 2, 3, 6; a(12) = 1 + 2 + 3 + 6 = 12.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Programs
-
Magma
[&+[d: d in Divisors(n) | IsIntegral(n / SumOfDivisors(d))]: n in [1..100]];
-
Mathematica
a[n_] := DivisorSum[n, # &, Divisible[n, DivisorSigma[1, #]] &]; Array[a, 100] (* Amiram Eldar, Jul 21 2019 *)
-
PARI
a(n) = sumdiv(n, d, d*(!(n % sigma(d)))); \\ Michel Marcus, Jul 19 2019
Comments