cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A326697 a(n) is the sum of divisors d of n such that sigma(d) divides n.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 12, 1, 1, 1, 5, 1, 8, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 3, 1, 40, 1, 1, 1, 17, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 28
Offset: 1

Views

Author

Jaroslav Krizek, Jul 19 2019

Keywords

Comments

a(A097603(n)) > 1.
See A173441 and A326698 for number and product of such divisors.
From Bernard Schott, Aug 13 2019: (Start)
a(n) = 1 if n is in A000961,
a(n) = 1 if n is in A006881 \ {6},
a(n) = 1 if n is in A001749 \ {12, 28}. (End)

Examples

			For n = 12, divisors d of 12: 1, 2, 3, 4, 6, 12;
corresponding sigma(d): 1, 3, 4, 7, 12, 28;
sigma(d) divides n for 4 divisors d: 1, 2, 3, 6;
a(12) = 1 + 2 + 3 + 6 = 12.
		

Crossrefs

Programs

  • Magma
    [&+[d: d in Divisors(n) | IsIntegral(n / SumOfDivisors(d))]: n in [1..100]];
    
  • Mathematica
    a[n_] := DivisorSum[n, # &, Divisible[n, DivisorSigma[1, #]] &]; Array[a, 100] (* Amiram Eldar, Jul 21 2019 *)
  • PARI
    a(n) = sumdiv(n, d, d*(!(n % sigma(d)))); \\ Michel Marcus, Jul 19 2019

A326698 a(n) is the product of divisors d of n such that sigma(d) divides n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 36, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 36, 1, 1, 1, 4, 1, 10, 1, 1, 1, 1, 1, 36, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 36, 1, 1, 1, 1, 1, 2, 1, 784, 1, 1, 1, 180, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 36, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Jaroslav Krizek, Jul 19 2019

Keywords

Comments

a(A097603(n)) > 1.
See A173441 and A326697 for number and sum such divisors.

Examples

			For n = 12, divisors d of 12: 1, 2, 3, 4, 6, 12;
corresponding sigma(d): 1, 3, 4, 7, 12, 28;
sigma(d) divides n for 4 divisors d: 1, 2, 3, 6;
a(12) = 1 * 2 * 3 * 6 = 36.
		

Crossrefs

Programs

  • Magma
    [&*[d: d in Divisors(n) | IsIntegral(n / SumOfDivisors(d))]: n in [1..100]];
    
  • Mathematica
    a[n_] := Times @@ Select[Divisors[n], Divisible[n, DivisorSigma[1, #] &]]; Array[a, 100] (* Amiram Eldar, Jul 21 2019 *)
  • PARI
    a(n) = my(p=1); fordiv(n, d, if (!(n % sigma(d)), p *= d)); p; \\ Michel Marcus, Jul 19 2019

A327156 a(n) = Product_{d|n, d>1} A008578(1+A286561(n,sigma(d))), where A286561(n,x) gives the highest exponent of x dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 8, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 5, 1, 8, 1, 1, 1, 16, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 32, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Sep 18 2019

Keywords

Crossrefs

Programs

  • PARI
    A327156(n) = { my(m=1,v); fordiv(n,d,if((d>1) && ((v = valuation(n,sigma(d)))>0), m *= prime(v))); (m); };

Formula

a(n) = Product_{d|n, d>1} A008578(1+A286561(n,sigma(d))), where sigma = A000203.
Other identities. For all n >= 1:
1+A001222(a(n)) = A173441(n).

A173442 Number of divisors d of number n such that sigma(d) does not divide n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 3, 1, 2, 1, 3, 3, 4, 1, 4, 1, 5, 3, 3, 1, 4, 2, 3, 3, 4, 1, 5, 1, 5, 3, 3, 3, 5, 1, 3, 3, 7, 1, 6, 1, 5, 5, 3, 1, 6, 2, 5, 3, 5, 1, 6, 3, 4, 3, 3, 1, 7, 1, 3, 5, 6, 3, 6, 1, 5, 3, 7, 1, 8, 1, 3, 5, 5, 3, 6, 1, 9, 4, 3, 1, 6, 3, 3, 3, 7, 1, 8, 3, 5, 3, 3, 3, 8, 1, 5, 5, 8
Offset: 1

Views

Author

Jaroslav Krizek, Feb 18 2010

Keywords

Comments

Sigma(n) = A000203(n). a(n) = A000005(n) - A173441(n).
a(n) >= 1 for n >= 2, with equality if and only if n is prime. - Robert Israel, Oct 10 2017

Examples

			For n = 12, a(12) = 2. We see that the divisors of 12 are 1, 2, 3, 4, 6, 12. The corresponding sigma(d) are 1, 3, 4, 7, 12, 28. The sigma(d) which do not divide n for 2 divisors d are 4 and 12.
		

Crossrefs

Programs

  • Maple
    f:= n -> nops(select(t -> n mod numtheory:-sigma(t) <> 0, numtheory:-divisors(n))):
    map(f, [$1..100]); # Robert Israel, Oct 10 2017
  • Mathematica
    Table[Length[Select[Divisors[n], Not[Divisible[n, DivisorSigma[1, #]]], &]], {n, 100}] (* Alonso del Arte, Oct 10 2017 *)
  • PARI
    a(n) = sumdiv(n, d, (n % sigma(d)) != 0); \\ Michel Marcus, Oct 11 2017

Extensions

More terms from Robert Israel, Oct 10 2017

A309253 a(n) is the smallest number m with exactly n such divisors d that sigma(d) divides m.

Original entry on oeis.org

1, 6, 30, 12, 60, 84, 1140, 120, 168, 2340, 1848, 360, 2184, 1080, 4368, 840, 10440, 1680, 7920, 2520, 6552, 3360, 7560, 5040, 13104, 27720, 73440, 36960, 21840, 15120, 72072, 10080, 95760, 26208, 63840, 20160, 146160, 144144, 87360, 174720, 1071360, 166320
Offset: 1

Views

Author

Jaroslav Krizek, Aug 08 2019

Keywords

Examples

			For n = 3; a(3) = 30 because 30 is the smallest number with exactly 3 divisors d that sigma(d) is also its divisor, namely 1, 2 and 5 as sigma(1) = 1, sigma(2) = 3 and sigma(5) = 6, and all these (1, 3 and 6) are divisors of 30.
		

Crossrefs

Programs

A323880 Number of divisors d > 1 of n such that A003415(d) divides n, where A003415 gives the arithmetic derivative of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 2, 4, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 3, 2, 2, 1, 5, 1, 2, 2, 3, 2, 3, 1, 3, 2, 4, 1, 5, 1, 2, 2, 3, 2, 3, 1, 3, 2, 2, 1, 4, 2, 2, 2, 3, 1, 5, 2, 3, 2, 2, 2, 6, 1, 3, 2, 4, 1, 3, 1, 3, 3
Offset: 1

Views

Author

Antti Karttunen, Feb 07 2019

Keywords

Crossrefs

Cf. A003415.
Cf. also A173441, A323878, A323879.

Programs

  • PARI
    A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415
    A323880(n) = sumdiv(n,d,(d>1)&&!(n%A003415(d)));

Formula

a(n) = Sum_{d|n, d>1} [A003415(d)|n], where [ ] is the Iverson bracket, and A003415 gives the arithmetic derivative of n.

A326696 Numbers m with at least one divisor d > 1 such that sigma(d) divides m.

Original entry on oeis.org

6, 12, 18, 24, 28, 30, 36, 42, 48, 54, 56, 60, 66, 72, 78, 84, 90, 96, 102, 108, 112, 114, 117, 120, 126, 132, 138, 140, 144, 150, 156, 162, 168, 174, 180, 182, 186, 192, 196, 198, 204, 210, 216, 222, 224, 228, 234, 240, 246, 252, 258, 264, 270, 276, 280, 282
Offset: 1

Views

Author

Jaroslav Krizek, Aug 30 2019

Keywords

Comments

All integers m contain at least one divisor d (number 1) such that sigma(d) divides m.
See A309253 for the smallest numbers m with n divisors d such that sigma(d) divides m for n >= 1.
Supersequence of A097603 (multiples of perfect numbers).
From Bernard Schott, Sep 04 2019: (Start)
If m = 6 * k with k >= 1, then 2 divides m and sigma(2) = 3 also divides m; so, the positive multiples of 6 belong to this sequence.
This sequence is generated by the primitive terms. A primitive term m is necessarily of the form d * sigma(d) where 1 < d < m is a divisor of m. The first few primitives are: 6, 28, 117, 182, ...
Some subsequences of such primitives, not exhaustive list:
1) d is prime p and m = p * sigma(p) = p * (p+1) is oblong.
For p = 2, 13, 19, 37, ..., we get 6, 182, 380, 1406, ...
2) d = p^2 with p prime, and m = p^2 * (p^2 + p + 1).
For p = 2, 3, 5, 7, ..., we get m = 28, 117, 775, 2793, ...
3) d = 2^(q-1) and m = 2^(q-1) * (2^q -1), with q prime in A000043 and 2^q - 1 is a Mersenne prime in A000668, then m is a perfect number in A000039.
For q prime = 2, 3, 5, 7, 13, ..., we get m = 6, 28, 496, 8128, 33550336, ... (End)

Examples

			Divisors d of 12: 1, 2, 3, 4, 6, 12; corresponding sigma(d):1, 3, 4, 7, 12, 28; sigma(d) divides 12 for 4 divisors d > 1: 2, 3 and 6.
		

Crossrefs

Subsequences: A008588 \ {0}, A097603.

Programs

  • Magma
    [m: m in [1..10^5] | #[d: d in Divisors(m) | IsIntegral(m / SumOfDivisors(d) ) and d gt 1] gt 0];
    
  • Maple
    filter:= proc(n) local d;
      uses numtheory;
      ormap(t -> n mod sigma(t) = 0, divisors(n) minus {1})
    end proc:
    select(filter, [$2..1000]); # Robert Israel, Oct 07 2019
  • Mathematica
    aQ[n_] := AnyTrue[Rest @ Divisors[n], Divisible[n, DivisorSigma[1, #]] &]; Select[Range[282], aQ] (* Amiram Eldar, Aug 31 2019 *)
  • PARI
    isok(m) = fordiv(m, d, if ((d>1) && (!(m % sigma(d))), return(1))); \\ Michel Marcus, Sep 03 2019

Formula

A173441(a(n)) > 1; A326697(a(n)) > 1; A326697(a(n)) > 1.
Showing 1-7 of 7 results.