A173475 Triangle T(n, k) = c(n)/(c(k)*c(n-k)) where c(n) = Product_{j=0..n} A051179(j), read by rows.
1, 1, 1, 1, 5, 1, 1, 85, 85, 1, 1, 21845, 371365, 21845, 1, 1, 1431655765, 6254904037285, 6254904037285, 1431655765, 1, 1, 6148914691236517205, 1760625833240390967011987365, 452480839142780478522080752805, 1760625833240390967011987365, 6148914691236517205, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 5, 1; 1, 85, 85, 1; 1, 21845, 371365, 21845, 1; 1, 1431655765, 6254904037285, 6254904037285, 1431655765, 1;
Links
- G. C. Greubel, Rows n = 0..10 of the triangle, flattened
Crossrefs
Cf. A051179.
Programs
-
Mathematica
c[n_]:= Product[2^(2^j) - 1, {j,0,n}]; T[n_, k_]:= c[n]/(c[k]*c[n-k]); Table[T[n, k], {n,0,8}, {k,0,n}]//Flatten
-
Sage
@CachedFunction def c(n): return product( 2^(2^j) -1 for j in (0..n) ) def T(n,k): return c(n)/(c(k)*c(n-k)) flatten([[T(n,k) for k in (0..n)] for n in (0..8)]) # G. C. Greubel, Apr 26 2021
Formula
T(n, k) = c(n)/(c(k)*c(n-k)) where c(n) = Product_{j,0,n} A051179(j).
Extensions
Edited by G. C. Greubel, Apr 26 2021