A173497 a(n) = a(n-1) + a(n-2) - floor(a(n-2)/2), starting 2,1.
2, 1, 2, 3, 4, 6, 8, 11, 15, 21, 29, 40, 55, 75, 103, 141, 193, 264, 361, 493, 674, 921, 1258, 1719, 2348, 3208, 4382, 5986, 8177, 11170, 15259, 20844, 28474, 38896, 53133, 72581, 99148, 135439, 185013, 252733, 345240, 471607, 644227, 880031
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..7374
Programs
-
Maple
A[0]:= 2: A[1]:= 1: for n from 2 to 100 do A[n]:= A[n-1]+A[n-2]-floor(A[n-2]/2) od: seq(A[i],i=0..100); # Robert Israel, Aug 30 2020
-
Mathematica
l[0] = 2; l[1] = 1; l[n_] := l[n] = l[n - 1] + l[n - 2] - Floor[l[n - 2]/2] Table[l[n], {n, 0, 30}] RecurrenceTable[{a[0]==2,a[1]==1,a[n]==a[n-1]+a[n-2]-Floor[a[n-2]/2]},a,{n,50}] (* Harvey P. Dale, Apr 26 2016 *)
Formula
a(n) = a(n-1) + a(n-2) - floor(a(n-2)/2).
Extensions
More terms from Max Alekseyev, Jun 18 2011
Comments