A173572 Odd integers n such that 2^n == 4 (mod n).
1, 20737, 93527, 228727, 373457, 540857, 2231327, 11232137, 15088847, 15235703, 24601943, 43092527, 49891487, 66171767, 71429177, 137134727, 207426737, 209402327, 269165561, 302357057, 383696711, 513013327
Offset: 1
Keywords
References
- A. E. Bojarincev, Asymptotic expressions for the n-th composite number, Univ. Mat. Zap. 6:21-43 (1967). (in Russian)
- R. K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, Third Edition, 2004
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 2.
Links
- Max Alekseyev, Table of n, a(n) for n = 1..722 (all terms below 10^14)
- C. K. Caldwell, Composite Numbers
- A. Rotkiewicz, On the congruence 2^(n-2) == 1 (mod n). Math. Comp. 43 (1984), 271-272.
Programs
-
Maple
with(numtheory): for n from 1 to 100000000 do: a:= 2^(n-2)- 1; b:= a / n; c:= floor(b): if b = c and tau(n) <> 2 then print (n); else fi;od:
-
Mathematica
m = 4; Join[Select[Range[1, m, 2], Divisible[2^# - m, #] &], Select[Range[m + 1, 10^6, 2], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 12 2018 *)
-
PARI
is(n) = n%2==1 && Mod(2,n)^n==Mod(4,n) \\ Jinyuan Wang, Feb 22 2019
Extensions
Edited and term 1 prepended by Max Alekseyev, Aug 09 2012
Comments