cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173587 Primes of the form x^3 + 2y^3, with x,y >0.

Original entry on oeis.org

3, 17, 29, 43, 127, 179, 251, 277, 359, 397, 433, 557, 593, 811, 857, 1051, 1367, 1459, 1583, 1753, 1801, 2017, 2027, 2213, 2251, 2447, 2663, 2689, 2729, 2789, 3221, 3331, 3391, 3457, 3581, 4421, 4519, 4787, 4967, 5653, 6037, 6217, 7109, 7883, 8081
Offset: 1

Views

Author

Michel Lagneau, Feb 22 2010

Keywords

Comments

Heath-Brown shows that this sequence is infinite.

Examples

			a(1) = 1^3+2*1^3 =3, prime. a(2) = 1^3 + 2* 2^3 = 17. a(7) = 1^3+2*r^3 =251.
		

Crossrefs

Programs

  • Maple
    T:=array(0..5000000): ind:=1: for x from 1 to 1000 do: for y from 1 to 1000 do: z:=x^3 + 2*y^3: if type(z,prime)=true then T[ind] :=z: ind :=ind+1: else fi: od: od: mini:=T[1]: ii:=1: for p from 1 to ind-1 do: for n from 1 to ind-1 do: if T[n] < mini then mini:= T[n]: ii:=n: else fi: od: print(mini): T[ii]:= 999999999999999: ii:=1: mini:=T[1] : od:
  • Mathematica
    formQ[p_] := Reduce[0 < x < p^(1/3) && 0 < y < (p/2)^(1/3) && x^3 + 2 y^3 == p, {x, y}, Integers] =!= False; Select[ Prime[ Range[1100]], formQ] (* Jean-François Alcover, Sep 28 2011 *)
  • PARI
    list(lim)=my(v=List(),t); for(y=1,sqrtn(lim\2,3), t=2*y^3; for(x=1,sqrtn(lim-t,3), if(isprime(t+x^3), listput(v,t+x^3)))); vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Sep 28 2011

Extensions

Converted references to links - R. J. Mathar, Feb 24 2010