cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A173588 T(n,k) = (k^n)*U(n, (1/k + k)/2), where U(n,x) is the n-th Chebyshev polynomial of the second kind, square array read by antidiagonals upward (n >= 0, k >= 1).

Original entry on oeis.org

1, 2, 1, 3, 5, 1, 4, 21, 10, 1, 5, 85, 91, 17, 1, 6, 341, 820, 273, 26, 1, 7, 1365, 7381, 4369, 651, 37, 1, 8, 5461, 66430, 69905, 16276, 1333, 50, 1, 9, 21845, 597871, 1118481, 406901, 47989, 2451, 65, 1, 10, 87381, 5380840, 17895697, 10172526, 1727605, 120100, 4161, 82, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 22 2010

Keywords

Comments

The intersection of this sequence and A121290 is the sequence 1, 5, 85, 341, 5461, 21845, .... - Paul Muljadi, Jan 27 2011

Examples

			Square array begins:
  n\k | 1    2      3        4         5          6 ...
  -----------------------------------------------------
   0  | 1    1      1        1         1          1 ...
   1  | 2    5     10       17        26         37 ...
   2  | 3   21     91      273       651       1333 ...
   3  | 4   85    820     4369     16276      47989 ...
   4  | 5  341   7381    69905    406901    1727605 ...
   5  | 6 1365  66430  1118481  10172526   62193781 ...
   6  | 7 5461 597871 17895697 254313151 2238976117 ...
   ...
		

Crossrefs

Programs

  • Mathematica
    p[x_, q_] = 1/(x^2 - (1/q + q)*x + 1);
    a = Table[Table[n^m*SeriesCoefficient[Series[p[x, n], {x, 0, 50}], m], {m, 0, 20}], {n, 1, 21}];
    Flatten[Table[Table[a[[m, n - m + 1]], {m, 1, n}], {n, 1, 10}]]
  • Maxima
    T(n, k) := k^n*chebyshev_u(n, (1/k + k)/2)$
    create_list(T(n - k + 1, k), n, 0, 12, k, 1, n + 1);
    /* Franck Maminirina Ramaharo, Jan 18 2019 */

Formula

T(n,k) = (k^n)*([x^n] 1/(x^2 - (1/k + k)*x + 1)).

Extensions

Edited by Franck Maminirina Ramaharo, Jan 24 2019

A173590 T(n, k) = k^n*U(n, (1/k + k)/2) + (n + 1)^(k - 1)*U(k - 1, (1/(n + 1) + n + 1)/2), where U(n,x) is the n-th Chebyshev polynomial of the second kind, square array read by antidiagonals (n >= 0, k >= 1).

Original entry on oeis.org

2, 3, 3, 4, 10, 4, 5, 31, 31, 5, 6, 102, 182, 102, 6, 7, 367, 1093, 1093, 367, 7, 8, 1402, 8032, 8738, 8032, 1402, 8, 9, 5511, 67763, 86181, 86181, 67763, 5511, 9, 10, 21910, 600322, 1166470, 813802, 1166470, 600322, 21910, 10, 11, 87463, 5385001, 18015797, 11900131, 11900131, 18015797, 5385001, 87463, 11
Offset: 0

Views

Author

Roger L. Bagula, Feb 22 2010

Keywords

Examples

			Square array begins:
  n\k | 1    2      3        4         5          6 ...
  -----------------------------------------------------
    0 | 2    3      4        5         6          7 ...
    1 | 3   10     31      102       367       1402 ...
    2 | 4   31    182     1093      8032      67763 ...
    3 | 5  102   1093     8738     86181    1166470 ...
    4 | 6  367   8032    86181    813802   11900131 ...
    5 | 7 1402  67763  1166470  11900131  124387562 ...
    6 | 8 5511 600322 18015797 260198052 2527336267 ...
    ...
		

Crossrefs

Programs

  • Mathematica
    p[x_, q_] = 1/(x^2 - (1/q + q)*x + 1);
    a = Table[Table[n^m*SeriesCoefficient[Series[p[x, n], {x, 0, 50}], m], {m, 0, 20}], {n, 1, 21}];
    b = (a + Transpose[a]);
    Flatten[Table[Table[b[[m, n - m + 1]], {m, 1, n}], {n, 1, 10}]]
  • Maxima
    T(n, k) := k^n*chebyshev_u(n, (1/k + k)/2) + (n + 1)^(k - 1)*chebyshev_u(k - 1, (1/(n + 1) + n + 1)/2)$
    create_list(T(n - k + 1, k), n, 0, 12, k, 1, n + 1);
    /* Franck Maminirina Ramaharo, Jan 24 2019 */

Formula

T(n,k) = A173588(n,k) + A173588(k-1,n+1).

Extensions

Edited by Franck Maminirina Ramaharo, Jan 24 2019
Showing 1-2 of 2 results.