cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173663 Numbers k that divide the k-th partial sum of all semiprimes.

Original entry on oeis.org

1, 2, 9, 19, 29, 44, 632, 11829, 19262, 25286, 26606, 29824, 247273, 310556, 491240, 1419166, 1601984, 9509238, 113333959, 220531559, 1034662494, 8323088842, 13102043650, 14053673678, 23505911647
Offset: 1

Views

Author

Jonathan Vos Post, Nov 24 2010

Keywords

Comments

a(26) > 3*10^10. - Donovan Johnson, Nov 26 2010

Examples

			a(1) = 1 because 1 divides the first semiprime 4, trivially also the first partial sum of all semiprimes.
a(2) = 2 because A062198(2) = A001358(1) + A001358(2) = 4 + 6 = 10 is divisible by 2.
a(3) = 9 because A062198(9) = 126 = 2 * 3^2 * 7 is divisible by 9.
a(4) = 19 because A062198(19) = 532 = 2^2 * 7 * 19 is divisible by 19.
a(5) = 29 because A062198(29) = 1247 = 29 * 43 is divisible by 29.
a(6) = 44 because A062198(44) = 2904 = 44 * 66.
		

Crossrefs

Programs

  • Mathematica
    SemiprimeQ[n_Integer] := If[Abs[n]<2, False, (2==Plus@@Transpose[FactorInteger[Abs[n]]][[2]])]; nn=10^6; sm=0; cnt=0; Reap[Do[If[SemiprimeQ[n], cnt++; sm=sm+n; If[Divisible[sm, cnt], Sow[cnt]]], {n, nn}]][[2, 1]]
  • PARI
    s=0; p=0; for(n=1, 1e9, until(bigomega(p++)==2,); (s+=p)%n || print1(n", ")) \\ M. F. Hasler, Nov 24 2010

Formula

{k: k | Sum_{i=1..k} A001358(i)}.

Extensions

Extended by T. D. Noe, Nov 24 2010
a(1)-a(17) double-checked and a(18) from M. F. Hasler, Nov 25 2010
a(19) from Ray Chandler, Nov 25 2010
a(20)-a(25) from Donovan Johnson, Nov 26 2010