A173663 Numbers k that divide the k-th partial sum of all semiprimes.
1, 2, 9, 19, 29, 44, 632, 11829, 19262, 25286, 26606, 29824, 247273, 310556, 491240, 1419166, 1601984, 9509238, 113333959, 220531559, 1034662494, 8323088842, 13102043650, 14053673678, 23505911647
Offset: 1
Examples
a(1) = 1 because 1 divides the first semiprime 4, trivially also the first partial sum of all semiprimes. a(2) = 2 because A062198(2) = A001358(1) + A001358(2) = 4 + 6 = 10 is divisible by 2. a(3) = 9 because A062198(9) = 126 = 2 * 3^2 * 7 is divisible by 9. a(4) = 19 because A062198(19) = 532 = 2^2 * 7 * 19 is divisible by 19. a(5) = 29 because A062198(29) = 1247 = 29 * 43 is divisible by 29. a(6) = 44 because A062198(44) = 2904 = 44 * 66.
Programs
-
Mathematica
SemiprimeQ[n_Integer] := If[Abs[n]<2, False, (2==Plus@@Transpose[FactorInteger[Abs[n]]][[2]])]; nn=10^6; sm=0; cnt=0; Reap[Do[If[SemiprimeQ[n], cnt++; sm=sm+n; If[Divisible[sm, cnt], Sow[cnt]]], {n, nn}]][[2, 1]]
-
PARI
s=0; p=0; for(n=1, 1e9, until(bigomega(p++)==2,); (s+=p)%n || print1(n", ")) \\ M. F. Hasler, Nov 24 2010
Formula
{k: k | Sum_{i=1..k} A001358(i)}.
Extensions
Extended by T. D. Noe, Nov 24 2010
a(1)-a(17) double-checked and a(18) from M. F. Hasler, Nov 25 2010
a(19) from Ray Chandler, Nov 25 2010
a(20)-a(25) from Donovan Johnson, Nov 26 2010
Comments