A173689 Numbers m such that the sum of square of factorial of decimal digits is square.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 122, 202, 212, 220, 221, 244, 424, 442, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 2222, 3333, 3444, 4344, 4434, 4443, 4444, 5555, 6666, 6677, 6767, 6776, 6888, 7667, 7676, 7766, 7777, 8688, 8868, 8886, 8888, 9999
Offset: 1
Examples
a(16) = 244 is in the sequence because (2!)^2 + (4!)^2 + (4!)^2 = 1156 = 34^2.
Links
- Jinyuan Wang, Table of n, a(n) for n = 1..1487
Programs
-
Maple
with(numtheory):for n from 0 to 10000 do:l:=length(n):n0:=n:s:=0:for m from 1 to l do:q:=n0:u:=irem(q,10):v:=iquo(q,10):n0:=v :s:=s+(u!)^2:od: q:=sqrt(s):if floor(q)= q then printf(`%d, `,n):else fi:od:
-
Mathematica
Select[Range[0,10000],IntegerQ[Sqrt[Total[(IntegerDigits[#]!)^2]]]&] (* Harvey P. Dale, Dec 19 2011 *)
-
Python
from itertools import count, islice, combinations_with_replacement from math import factorial from sympy.ntheory.primetest import is_square from sympy.utilities.iterables import multiset_permutations def A173689_gen(): # generator of terms yield 0 for l in count(0): for i in range(1,10): fi = factorial(i)**2 yield from sorted(int(str(i)+''.join(map(str,k))) for j in combinations_with_replacement(range(10), l) for k in multiset_permutations(j) if is_square(fi+sum(map(lambda n:factorial(n)**2,j)))) A173689_list = list(islice(A173689_gen(),50)) # Chai Wah Wu, Feb 23 2023
Extensions
Offset changed to 1 by Jinyuan Wang, Feb 26 2020
Comments