cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173690 Partial sums of round(n^2/5).

Original entry on oeis.org

0, 0, 1, 3, 6, 11, 18, 28, 41, 57, 77, 101, 130, 164, 203, 248, 299, 357, 422, 494, 574, 662, 759, 865, 980, 1105, 1240, 1386, 1543, 1711, 1891, 2083, 2288, 2506, 2737, 2982, 3241, 3515, 3804, 4108, 4428, 4764, 5117, 5487, 5874, 6279, 6702, 7144, 7605, 8085, 8585
Offset: 0

Views

Author

Mircea Merca, Nov 25 2010

Keywords

Comments

Partial sums of A008738.

Examples

			a(5) = round(1/5) + round(4/5) + round(9/5) + round(16/5) + round(25/5) = 0 + 1 + 2 + 3 + 5 = 11.
		

Crossrefs

Cf. A008738.

Programs

  • Maple
    A173690 := proc(n) add( round(i^2/5),i=0..n) ; end proc: # R. J. Mathar, Jan 10 2011
  • Mathematica
    Accumulate[Round[Range[0,50]^2/5]] (* or *) LinearRecurrence[{3,-3,1,0,1,-3,3,-1},{0,0,1,3,6,11,18,28},60] (* Harvey P. Dale, Mar 16 2022 *)
  • PARI
    a(n)=(2*n^3+3*n^2+n+6)\30 \\ Charles R Greathouse IV, May 30 2011

Formula

a(n) = Sum_{k=0..n} round(k^2/5);
a(n) = round((2*n^3 + 3*n^2 + n)/30);
a(n) = floor((2*n^3 + 3*n^2 + n + 6)/30);
a(n) = ceiling((2*n^3 + 3*n^2 + n - 6)/30);
a(n) = a(n-5) + (n-2)^2 + 2, n > 4;
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-5) - 3*a(n-6) + 3*a(n-7) - a(n-8), n > 7.
G.f.: x^2*(x+1)*(x^2 - x + 1) / ( (x^4 + x^3 + x^2 + x + 1)*(x-1)^4 ).